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review several aspects of social learning, such as how we 
learn: from and about others, what other people are 
thinking, and how people are connected to each other. 
Much of this work is based on basic learning concepts 
(e.g., Pavlovian, instrumental, goal-directed, habitual), 
such as forming associations between stimuli and updat-
ing beliefs based on feedback, and suggests reliance on 
neural circuits comprising the amygdala, dorsal and ven-
tral striatum (DS, VS), anterior cingulate cortex (ACC), 
and ventromedial prefrontal cortex (vmPFC; Delgado, 
2007; Haber & Knutson, 2010; O’Doherty, 2004; Phelps 
& LeDoux, 2005; Yin & Knowlton, 2006). However, 
rather than simple sensory or affective signals, this infor-
mation is often gleaned through the lens of social cogni-
tion. Thus, much of the literature reviewed involves 
interactions between neural systems supporting learn-
ing, affect, and social reasoning.

Learning from Others

We are motivated at once to both maximize our self-
interest and minimize our uncertainty about the world. 
This requires us to frequently switch between exploit-
ing what we know and exploring the unknown (Cohen, 
McClure, & Yu, 2007). Social learning offers the advan-
tage of minimizing our uncertainty about the world 
based on others’ experiences without incurring our 
own costs from exploring. This type of fictive learning 
(Lohrenz, McCabe, Camerer, & Montague, 2007) 
could be based on simply observing the outcomes of 
others’ actions (i.e., observational learning). Alterna-
tively, it can be learned from directly communicating 
these experiences, such as being explicitly told which is 
the best option.

Observational learning  Observing the outcomes of 
others while minimizing our own costs is vital for sur-
vival from the earliest stages of life. This extension of 
Pavlovian learning can provide key insight into the 
nature of threats in the environment and how to avoid 
them, thereby ensuring survival (reviewed in Olsson & 
Phelps, 2007). The observational learning of stimuli 

abstract  ​Our well-being is contingent upon our ability to 
navigate challenges and make decisions within a dynamic 
social environment. Social learning provides unique oppor-
tunities to meet such challenges by helping us to reduce 
uncertainty, update social expectations, and ultimately maxi-
mize social gains by developing close relationships. This 
chapter will review the mechanisms of social learning, focus-
ing on how we can learn from and about others, how we can 
learn about others’ mental states, and how we come to repre-
sent social relationships and social distance.

Our days are often spent navigating a complex and 
dynamic social environment in pursuit of various goals. 
For example, conducting simple transactions (e.g., buy-
ing a meal) often leads to interactions with complete 
strangers. We typically interact with others on a daily 
basis who comprise multiple interleaved social networks 
(e.g., family, friends, professional colleagues). Even 
when we are ostensibly alone, we can still be immersed 
in a social world when consuming media through a 
book, television, or the Internet. Given the preponder-
ance of our lives spent embedded in a social context, a 
key question is understanding how and what types of 
information we learn from the social environment.

Humans have strong motivations to approach 
resources, while avoiding harm for self and others, and 
reduce uncertainty about the world (Crockett, Kurth-
Nelson, Siegel, Dayan, & Dolan, 2014; FeldmanHall & 
Chang, 2018). We are also intensely driven to form close 
relationships with others (Baumeister & Leary, 1995). 
These two overarching goals motivate much of social 
learning. We can accelerate reducing our uncertainty 
about the world by learning vicariously from others’ expe-
riences from both observation and direct communica-
tion. Similarly, we can also reduce our uncertainty about 
others by learning about their beliefs, motivations, pref-
erences, and overall character—for example, how does a 
certain person think about the world? What types of 
experiences have shaped their beliefs and perspective? 
What type of moral character do they have and would 
they be a good colleague? The reduction of social uncer-
tainty can facilitate subsequent social interactions and 
the development of close relationships. This chapter will 
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950    Social Neuroscience

investments, with positive or negative consequences. 
Indeed, participants become risk averse when others are 
risk averse and become more risk seeking when others 
are risk seeking (Chung, Christopoulos, King-Casas, 
Ball, & Chiu, 2015), suggesting a utility placed on others’ 
behavior that tracks with changes in vmPFC activity. 
This pattern of “contagion” is driven by a change in one’s 
own risk attitudes (Suzuki, Jensen, Bossaerts, & 
O’Doherty, 2016). Relatedly, the vmPFC also appears to 
track others’ confidence about their choice, which can 
influence our own decisions to pursue risk and uncer-
tainty (Campbell-Meiklejohn, Simonsen, Frith, & Daw, 
2017). These findings suggest that the overall value of 
these social and nonsocial signals appears to be inte-
grated in the vmPFC and guides learning in uncertain 
environments (Behrens, Hunt, Woolrich, & Rushworth, 
2008). Social nudges can also arise from evaluative feed-
back from peers, which is particularly important to con-
sider given the dramatic rise in engagement with social 
media (Rodman, Powers, & Somerville, 2017). For exam-
ple, even the mere presence of a peer can have an impact 
on reward-related neural activation (Fareri, Niznikie-
wicz, Lee, & Delgado, 2012), influence decisions to take 
risks (Chein, Albert, O’Brien, Uckert, & Steinberg, 2011), 
and lead to prosocial decision-making (Izuma, Saito, & 
Sadato, 2010), in possible anticipation of social approval. 
In sum, taking cues from others can significantly influ-
ence day-to-day decisions, particularly with respect to 
reducing uncertainty and validating our own choices.

Instructed learning  A more explicit way of reducing 
uncertainty comes through directly receiving rules 
about environmental contingencies from another per-
son. Learning via instruction is a more top-down and 
rapid process that can impact the goals of reducing 
uncertainty and maximizing one’s best interest. For 
example, being provided (incorrect) instructed infor-
mation about which of two stimuli will most likely lead 
to a reward will bias choice toward ostensibly more 
rewarding options, which hold even in the face of 
inconsistent feedback (i.e., punishment). Thus, explicit 
instruction may inhibit the appropriate updating of 
one’s expectations (Doll, Jacobs, Sanfey, & Frank, 
2009), consistent with prefrontal regulation of instru-
mental striatal learning processes (Li, Delgado, & 
Phelps, 2011). Instructions can also impact our ability 
to learn to avoid harm via corticostriatal circuitry dur-
ing reversal learning (Atlas, Doll, Li, Daw, & Phelps, 
2016). Interestingly, instructions from others concern-
ing the reliability of upcoming feedback may moderate 
these biased processes (Schiffer, Siletti, Waszak, & 
Yeung, 2017).

paired with aversive outcomes results in equivalent 
learning as direct experience. Observationally learned 
cues are associated with increased physiological arousal 
and increased activation of the amygdala, anterior cin-
gulate cortex (ACC), and insula (Olsson, Nearing, & 
Phelps, 2007). Rodent work has demonstrated that neu-
rons projecting from the ACC, the basolateral nucleus of 
the amygdala (BLA), preferentially fire to cues learned 
via observing a conspecific undergo fear conditioning, 
while BLA neurons demonstrate reduced responding to 
such cues when ACC projections are inhibited (Allsop 
et al., 2018). Single-cell recordings in epilepsy patients 
also implicate rostral ACC neurons in the encoding of 
computational signals of observation, in contrast to 
amygdala and medial prefrontal cortex (mPFC) neu-
rons, which show stronger involvement during firsthand 
experience of outcomes (Boorman, Fried, & Hill, 2016). 
Importantly, the extinction of a learned fear association 
can transmit vicariously across individuals (Golkar, Sel-
bing, Flygare, Ohman, & Olsson, 2013), suggesting that 
this method of gleaning information from others aids in 
reducing uncertainty and avoiding harm.

Observational learning can also help us maximize 
gain and approach resources. For example, observing a 
person perform a given task can serve as an anchor (i.e., 
prior) that we can use to maximize our own perfor
mance based on subsequent experience. Similarly, we 
can make predictions about whether success will come 
to others and adjust our expectations after observing 
their outcomes. Such observational prediction error sig-
nals (i.e., expected observed outcomes) have been 
captured in the vmPFC, VS (Burke, Tobler, Baddeley, & 
Schultz, 2010), and DS (Cooper, Dunne, Furey, & 
O’Doherty, 2012), regions implicated in functional mag-
netic resonance imaging (fMRI) studies of associative 
and instrumental learning (Garrison, Erdeniz, & Done, 
2013), as well as the intraparietal sulcus and dorsome-
dial prefrontal cortex (dmPFC; Dunne, D’Souza, & 
O’Doherty, 2016). Action prediction errors (i.e., of what 
others will do) are more associated with lateral PFC 
(Burke et al., 2010). Taken together, observational learn-
ing is a powerful social mechanism—through which we 
learn about the environment while reducing exposure 
to possible harm—that relies heavily on neural circuits 
supporting learning from direct experiences.

Social nudges  Efforts to reduce uncertainty in the social 
world are often complicated by considerations of risk. In 
such situations we may look to others as a guide for 
whether to be risky or more prudent. Hearing from a 
friend or colleague who just invested in a stable rather 
than a more volatile stock may sway or nudge our own 
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Social interactions and reputation  First impressions serve 
as a baseline expectation of other individuals that 
inform the likelihood of future successful interactions 
with them. Violations of social expectations (e.g., think-
ing we will be liked, only to find out we are not) tend to 
recruit regions involved in processing cognitive con-
flict and error monitoring, such as the dorsal ACC, 
whereas the ventral ACC discriminates between the 
valence of social outcomes agnostic to initial expecta-
tions (Cooper, Dunne, Furey, & O’Doherty, 2014; Somer-
ville, Heatherton, & Kelley, 2006). The encoding of 
such signals in the ACC, VS, and mPFC provide neural 
mechanisms through which we can learn about social 
targets likely to provide opportunities for social inclu-
sion and affiliation during repeated interactions ( Jones 
et al., 2011).

Repeated interactions with a partner enable learning 
about reputation, which facilitates the development of 
relationships (Fareri & Delgado, 2014b). Trust under-
scores learning about one’s reputation and can be oper-
ationalized as the expectation that someone will 
reciprocate generosity in situations involving mutual, 
interdependent risk (Simpson, 2007). Reciprocity serves 
as a valued social commodity that is consistently repre-
sented in corticostriatal reward systems (Bellucci, 
Chernyak, Goodyear, Eickhoff, & Krueger, 2016; Phan, 
Sripada, Angstadt, & McCabe, 2010). Experienced reci-
procity during repeated interactions with a partner 
significantly predicts whether we should continue to col-
laborate with someone, as peak blood oxygen level-
dependent (BOLD) activation in the caudate nucleus 
exhibits a temporal shift from the time at which a part-
ner’s choice to reciprocate is revealed to an anticipatory 
peak prior to the revelation of a partner’s response 
(King-Casas et al., 2005). This pattern of striatal activa-
tion is consistent with temporal difference learning mod-
els that have been reported in midbrain dopaminergic 
neurons of nonhuman primates (Hollerman & Schultz, 
1998), suggesting a social reward prediction error that 
can aid in updating social expectations/reputation. 
Expectations of reciprocity are susceptible to outside 
influence (i.e., prior instructed information about a 
partner’s moral character): people tend to trust those 
of positive moral character over those of negative moral 
character, even when faced with information inconsis-
tent with said priors (Delgado, Frank, & Phelps, 2005). 
This phenomenon may be driven by the interference of 
instructed social priors with striatal learning mecha-
nisms to appropriately update social expectations.

Computational mechanisms of impression updating   Updat-
ing social impressions is thus a dynamic process 

Learning about Others

In addition to reducing uncertainty about the world, 
we are also motivated to build relationships and forge 
connections with others. This requires building a 
model of a person that can predict their behavior across 
a range of contexts (e.g., how good or trustworthy is 
this person?). We can then update this model based on 
simple information about a person’s social relations 
and group membership through direct interactions or 
vicariously through another person’s experience. More 
sophisticated models might incorporate information 
about an agent’s personality, preferences, or how the 
agent thinks about the world—that is, the agent’s 
beliefs, desires, and intentions (Baker, Jara-Ettinger, 
Saxe, & Tenenbaum, 2017).

Trait learning and impression updating  We often form 
simple models of others by trying to infer their traits. 
Upon meeting someone novel, we might make implicit 
judgments about their level of trustworthiness or 
approachability based on facial characteristics 
(Todorov, Baron, & Oosterhof, 2008), assumed knowl-
edge of their affiliations with a particular social group 
(Stanley, Sokol-Hessner, Banaji, & Phelps, 2011), or 
their beliefs about the world (i.e., stereotypes; Freeman 
& Johnson, 2016). These snap judgments contribute to 
the initial models we construct about others based on 
social approach and avoidance motives (Willis & 
Todorov, 2006). Forming first impressions implicates 
the amygdala (Engell, Haxby, & Todorov, 2007) and 
posterior cingulate cortex (PCC) in representing 
valenced social information, as well as the dmPFC in 
representing more general information about a person 
(Schiller, Freeman, Mitchell, Uleman, & Phelps, 2009).

Navigating our social landscapes requires constantly 
updating our initial models of others. We can do this 
readily when we acquire new information about a per-
son that is perceived to occur with high statistical fre-
quency in the social environment (i.e., more people 
tend to act trustworthy than not; Mende-Siedlecki, 
Baron, & Todorov, 2013). The dmPFC, PCC, and supe-
rior temporal sulcus (STS), all regions supporting 
social cognition (Stanley & Adolphs, 2013), are espe-
cially important for tracking inconsistencies in diagnos-
tic social information about a target (Mende-Siedlecki, 
Cai, & Todorov, 2012). Further, positive changes in 
impressions (based on information about competence) 
may be mediated by increasing activation in lateral 
PFC, while negative changes in impressions of compe-
tence tend to recruit activation in mPFC, the striatum, 
and the STS (Bhanji & Beer, 2013).
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Learning about mental representations  Inherent in our 
ability to use social outcomes to build a model of anoth-
er’s reputation is the idea that we also need to be able 
to understand what types of goals motivate their behav
ior (Baker et al., 2017). Being able to represent some-
thing about others’ mental states and affective 
experiences (Spunt & Adolphs, 2017)—cornerstones of 
social cognition—is key to social learning across devel-
opment, with the dmPFC supporting such computa-
tions (Sul, Guroglu, Crone, & Chang, 2017). Multivariate 
analyses reveal that neural networks that support men-
talizing represent information about others’ mental 
states along three key dimensions—rationality (dmPFC, 
anterior temporal lobe), social impact or relevance 
(TPJ, precuneus, rostral ACC, dorsal ACC [dACC]), 
and valence (TPJ, dlPFC, inferior frontal gyrus/insula; 
Tamir, Thornton, Contreras, & Mitchell, 2016). These 
dimensions of mental state representation are critically 
involved in the ability to predict the manner in which 
individuals will transition between similar/different 
emotional states, something that overall we tend to be 
able to predict with high degrees of accuracy (Thorn-
ton & Tamir, 2017). In addition, modeling others’ 
mental states requires reasoning about how others will 
interpret and respond to our actions. Complex compu-
tational strategies instantiated in the mPFC and STS 
(and supported by interactions with the VS) indeed 
track both another’s (e.g., teacher) actions on a trial-by-
trial basis and estimations of how one’s own behavior 
will influence the future actions of another (Hampton, 
Bossaerts, & O’Doherty, 2008). Further, learning about 
others’ preferences for risky behavior (Suzuki et  al., 
2016) to inform our own choices relies on Bayesian 
mechanisms and mentalizing circuitry (e.g., dmPFC, 
dlPFC, inferior parietal lobule [iPL]), such that we use 
our own baseline preferences as a starting point from 
which to update beliefs about others.

Learning about social space  Social interactions typically 
occur within rich environments with more than one 
person. Thus, we can derive important information 
about people by learning about their place within social 
space. Indeed, humans develop and immerse them-
selves in widely interconnected social networks com-
prised of close others, varying degrees of friends of 
friends, and other acquaintances. As such, this type of 
social learning provides information indirectly about 
traits and the value of others through understanding 
how people relate to each other within a network of 
individuals. For example, networks of individuals char-
acterized by empathy tend to be those that involve closer, 
trusting relationships between individuals (Morelli, 
Ong, Makati, Jackson, & Zaki, 2017). Interestingly, social 

requiring a comparison of initial expectations/impres-
sions and current experiences (Chang, Doll, van ‘t 
Wout, Frank, & Sanfey, 2010), and recent years have 
seen a steady increase in the incorporation of computa-
tional approaches to learning about others. 
Reinforcement-learning (RL) approaches (Dayan & 
Daw, 2008; Sutton & Barto, 1998), for example, offer 
opportunities to apply additional precision to social neu-
roscientific questions via the mathematical formaliza-
tion of specific hypotheses regarding social behavior 
(Cheong, Jolly, Sul, & Chang, 2017). The recent applica-
tion of RL models to learning about others has delin-
eated neurocomputational mechanisms supporting trait 
versus reward learning. When faced with the task of 
choosing between social targets that could share some 
portion of an endowment, participants appear to use 
information about outcomes (i.e., amount shared) and 
generosity (i.e., what was the total amount available to be 
shared by someone) to inform choice and learning 
(Hackel, Doll, & Amodio, 2015). This study also reported 
overlapping activation in the VS for learning signals 
associated with both reward and generosity, consistent 
with extant research (Garrison, Erdeniz, & Done, 2013), 
but generosity also recruited a network of putative social 
regions (PCC, precuneus and right temporoparietal 
junction [rTPJ]). A related study found that learning 
about an individual’s traits could be described using 
the same Bayesian model as learning about monetary 
reward, but the neurocomputational signals support-
ing social learning are encoded almost exclusively in 
putative social regions (i.e., precuneus; Stanley, 2016).

RL approaches have also been applied to studies 
examining trust and reputation learning. Models assum-
ing that trust is a dynamic process posit that initial 
impressions shape the manner in which new informa-
tion is incorporated into belief updating about another 
individual (Chang et al., 2010). Indeed, if initial impres-
sions are strong enough, they can influence how much 
we subsequently value and use reciprocity/defection to 
learn about a partner. When priors acquired through 
direct social experience exist about another person, 
individuals show higher learning rates for outcomes 
that are consistent with initial impressions than for out-
comes that are inconsistent, demonstrating that prior 
expectations computationally influence impression 
updating (Fareri, Chang, & Delgado, 2012). Strong 
instructional priors also modulate the neurocomputa-
tional mechanisms of social learning. During violations 
of trust, connectivity between the striatum and ventro-
lateral prefrontal regions is enhanced when priors are 
present, suggesting inhibitory functional interactions 
that prevent successful impression updating (Fourag-
nan et al., 2013).

Poeppel, D., Mangun, G. R., & Gazzaniga, M. S. (Eds.). (2020). The cognitive neurosciences. ProQuest Ebook Central <a
         onclick=window.open('http://ebookcentral.proquest.com','_blank') href='http://ebookcentral.proquest.com' target='_blank' style='cursor: pointer;'>http://ebookcentral.proquest.com</a>
Created from dartmouth-ebooks on 2021-01-27 05:14:01.

C
op

yr
ig

ht
 ©

 2
02

0.
 M

IT
 P

re
ss

. A
ll 

rig
ht

s 
re

se
rv

ed
.



Fareri, Chang, and Delgado: Neural Mechanisms of Social Learning    953

Future Directions and Conclusions

Social learning serves to reduce uncertainty in the 
environment, maximize gains and avoid harm, and 
forge close relationships with others. The neural sys-
tems across many different types of social learning 
covered here rely heavily on interactions between corti-
costriatal circuitry and the cortical regions supporting 
social processing (Figure 83.1).

We note that the topics covered here are not exhaus-
tive. For instance, social learning can occur via other 
means, such as through the adherence to and enforce-
ment of social norms (Chang & Sanfey, 2013; Montague 
& Lohrenz, 2007; Xiang, Lohrenz, & Montague, 2013; 
Zaki, Schirmer, & Mitchell, 2011; Zhong, Chark, Hsu, & 
Chew, 2016) or the desire to avoid feelings of guilt for 
committing social transgressions (Chang, Smith, Duf-
wenberg, & Sanfey, 2011; Nihonsugi, Ihara, & Haruno, 
2015).

With respect to future directions, one exciting path 
concerns more concrete models of observational 
learning—that is, does this type of learning occur sim-
ply via the simple imitation of an agent or rather 
through using our observations of others to generate a 
model about environmental states (i.e., inverse rein-
forcement learning; Collette, Pauli, Bossaerts, & 
O’Doherty, 2017)? Better characterizing observational 
learning mechanisms can foster a deeper understanding 
of theory of mind processes and how they may break 
down in clinical samples (i.e., autism). Another interest
ing direction involves harnessing machine-learning 
algorithms to facilitate the prediction of psychological 
states (i.e., negative affect) based on decoding patterns 
of brain activation (Chang, Gianaros, Manuck, Krish-
nan, & Wager, 2015). Translating these types of predic-
tive techniques to questions of social appraisals (i.e., 
reputation, bias) and social decisions (i.e., trust) has 
implications for understanding breakdowns in represen
tations of others with interpersonal difficulties. Finally, 
developing stable, long-lasting relationships depends 
heavily upon the processes reviewed in this chapter. 
Learning about and from others facilitates the develop-
ment and maintenance of close, trusting relationships, 
which supports our overall well-being (Uchino, 2009). 
Future work can take a more comprehensive approach 
to characterizing the dynamics of relationships and 
shared experiences across groups of individuals as they 
relate to processing, learning, and remembering social 
information in more naturalistic contexts (Chen et al., 
2016) and how this subsequently influences mental 
health.

network complexity maps on to ventrolateral and 
medial amygdala functional connectivity (Bickart, Hol-
lenbeck, Barrett, & Dickerson, 2012), and other find-
ings implicate mPFC in distinguishing representations 
of self and others as a function of similarity and close-
ness (Krienen, Tu, & Buckner, 2010; Mitchell, Macrae, 
& Banaji, 2006).

Other work indicates that both reward-related (VS) 
and social regions (mPFC) differentially integrate infor-
mation about relationship closeness into value represen
tations of in-network versus out-of-network social 
experiences (Fareri et al., 2012; Fareri & Delgado, 2014a). 
For example, collaborative interactions with close others 
are associated with computational signals of social 
reward value, represented in the VS and mPFC when 
experiencing reciprocity, that are contingent upon inter-
personal aspects of a close relationship (Fareri, Chang, 
& Delgado, 2015). Relatedly, people are willing to forgo 
self-interest (i.e., higher monetary gain) in favor of more 
equitable splits with another person as a function of 
social closeness, a pattern that scales with activation in 
value-related (vmPFC) and social (rTPJ) brain regions 
(Strombach et al., 2015). Conversely, decisions to trust 
out-of-network members requires connectivity between 
regions implicated in cognitive control (i.e., dACC, lat-
eral PFC) and the striatum, presumably to inhibit prepo-
tent responses to distrust such individuals (Hughes, 
Ambady, & Zaki, 2016).

More recently, there has been growing interest in 
exploring how we learn the structure of social relation-
ships. Judging social distance within a social network 
appears to recruit the same regions involved in judging 
spatial and temporal distance (Parkinson, Liu, & Wheat-
ley, 2014), whereas judging the popularity of various 
members of a social network appears to recruit activa-
tion in reward circuitry (vmPFC, amygdala, VS) and 
social cognition networks (dmPFC, precuneus, left TPJ) 
(Zerubavel, Bearman, Weber, & Ochsner, 2015). Pat-
terns within social cognition networks when viewing 
faces can also predict which members have the highest 
social value within a social network (i.e., sources of 
friendship, empathy, and support) (Morelli, Leong, 
Carlson, Kullar, & Zaki, 2018). Finally, there is intriguing 
recent evidence of neural homophily that suggests we 
may have more similar patterns of brain activity to our 
friends when viewing videos than to more distant others 
(i.e., friends of friends) (Parkinson, Kleinbaum, and 
Wheatley, 2018). Taken together, these findings suggest 
that shared preferences and interpretations of the world 
may help explain why we become closer to certain indi-
viduals than others.
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