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Introduction

The burgeoning field of social neuroscience 
aims to characterize the neural and psycho­
logical processes that are involved in suc­
cessfully navigating the social world. 
Building on a rich history of integrating the 
disciplines of social and cognitive psychol­
ogy, social neuroscience attempts to use 
methods from cognitive neuroscience to 
better understand how social cognitions are 
instantiated in the brain (Ochsner & 
Lieberman,  2001; Sarter, Berntson, & 
Cacioppo, 1996). Early pioneering efforts 
attempted to map brain regions to social 
processes by using social psychological 
experimental paradigms while participants 
underwent functional neuroimaging. How­
ever, this work has had limited success inte­
grating social processes into a broader 
processing stream that includes cognitive, 
perceptual, and motoric processes. Making 
these types of inferences requires formulat­
ing models that include multiple types of 
computations.

The application of computational models 
has the potential to dramatically improve 
inferences in social neuroscience. A survey of 
members from two social neuroscience sci­
entific societies provided strong consensus 
that computational modeling is among the 
most promising approaches for progressing 
the field (Stanley & Adolphs, 2013). First, 

computational models provide a way to par­
simoniously represent how different social, 
affective, and cognitive processes might 
interact to produce behavior, simultane­
ously bridging different levels of analysis 
from molecular and cellular processes to 
systems and psychological level processes 
(Fox, Chang, Gorgolewski, & Yarkoni, 2014). 
Second, computational models force explicit 
formalization of a scientific hypothesis to 
make quantifiable predictions that can be 
tested and falsified. This is critical to evalu­
ating how well a model can account for a 
phenomenon while also comparing the pre­
dictions of competing models. Importantly, 
models can be compared not only by their 
ability to better account for behavior, but 
also by their capacity to explain neural pro­
cesses, which can substantially improve the 
model development and testing cycle. Finally, 
models can be combined, providing a prin­
cipled approach to developing a cumulative 
scientific understanding of how the brain 
operates.

In this chapter, we review an emerging lit­
erature that uses computational models to 
study the psychological and brain processes 
involved in social learning and inferring 
others’ mental states. We focus specifically 
on reviewing literature that uses a rein­
forcement learning framework to under­
stand how people learn from interacting 
with others.
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Reinforcement Learning 
Models

Reinforcement learning is a class of models 
that are commonly used to formalize trial-to-
trial learning in response to feedback. They 
formalize how an agent interacts with the 
environment by learning the mapping be­
tween actions in situations (states) and out­
comes (reward) with the goal of maximizing 
reward over time. The idea stems from  
work by behavioral psychologist Edward 
Thorndike (1911), who posited that actions 
followed by positive outcomes are likely to be 
repeated and those followed by negative 
outcomes are likely to be avoided.

One of the most simple and popular rein­
forcement learning models is the Rescorla–
Wagner model (1972), which updates an 
agent’s estimated value of states or actions 
based on the discrepancy between predicted 
and observed outcomes. For example, the 
value of a certain state at time t  can be writ­
ten as V t( ) with the subsequent value at 
V t +( )1  updated by:

	 V t V t r V t+( ) = ( ) + ⋅ − ( ) 1 α 	 (Eq. 17.1)

where 0 1,  and refers to the learning 
rate or the rate at which an agent adapts to 
new information. The discrepancy between 
the observed reward r and the expected 
reward V t( ) is described as the prediction 
error. When the learning rate is 0, the agent 
does not update newly observed values and 
when the learning rate is 1, the agent com­
pletely discards previous experiences and 
replaces them with the new information.

A classic finding in computational neu­
roscience is that dopamine neurons located 
in the ventral tegmental area (VTA) of the 
macaque brain appear to fire in response 
to reward prediction errors (Montague, 
Dayan, & Sejnowski, 1996; Schultz, Dayan, & 
Montague, 1997). The frequency of firing 
increases when a larger reward is received 
than expected, and decreases when a 
smaller reward is received than expected. 
Importantly, as the animal learns how much 

reward to expect, these same neurons start 
to predict the amount of expected reward by 
firing in response to a reward cue that pre­
cedes the actual reward outcome. Outcomes 
that are correctly predicted result in no fir­
ing of dopamine neurons upon receipt of 
the reward. In humans, functional mag­
netic resonance imaging (fMRI) studies 
have found that prediction error signals cor­
relate with activity in the ventral striatum 
(VS; McClure, Berns, & Montague, 2003; 
O’Doherty et al., 2004; O’Doherty, Dayan, 
Friston, Critchley, & Dolan, 2003) consistent 
with the notion that the VS receives synaptic 
signaling from midbrain dopamine neurons 
(Ferenczi et al., 2016). In the context of social 
cognition, the reinforcement learning frame­
work has been successfully used by many 
researchers to study various types of social 
learning processes.

Social Learning

Computational models of social learning 
describe (1) how we learn from the social 
world, and (2) how we learn about the social 
world. A growing body of evidence suggests 
substantial overlap between nonsocial (indi­
vidual) and social learning. For instance, 
areas in the prefrontal cortex (PFC) and 
basal ganglia centering around the VS are 
involved in comparing and updating both 
nonsocial and social values (Behrens, 
Hunt, & Rushworth, 2009; Hampton et al., 
2008; Sul et al., 2015; Vickery, Chun, & Lee, 
2011). Studies using economic utility mod­
els have found similar overlap between indi­
vidual and social decision-making (Hare, 
Camerer, Knoepfle, O’Doherty, & Rangel, 
2010; Ruff & Fehr, 2014). During the social 
learning process, these overlapping regions 
interact with other brain regions such as the 
anterior cingulate cortex (ACC), dorsome­
dial prefrontal cortex (DMPFC), and tempo­
roparietal junction (TPJ) typically associated 
with social processing (Behrens et al., 2008; 
Corbetta, Maurizio, Gaurav, & Shulman 
2008; Lee & Seo, 2016; Saxe & Wexler, 2005). 
In this section, we review two lines of 
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computational neuroscience research on 
social learning: learning from others and 
learning about others.

Observational/Vicarious 
Learning

In psychology, social learning is defined as 
learning that occurs without direct rein­
forcement, such as learning through obser­
vation, instruction, or vicarious rewards and 
punishments (Bandura,  1977). This type of 
learning by observing others’ reactions is 
adaptive in learning to avoid harmful or fear­
ful stimuli (Olsson & Phelps,  2007) as well  
as fundamental for human society for its crit­
ical role in socialization and cultural trans­
mission. Neural mechanisms of learning 
from observation and social feedback have 
been extensively studied, mainly in the 
framework of reinforcement learning. For 
example, Behrens and colleagues (2008) 
designed a reward-based associative learning 
task in which participants learned not only 
from their own experience (nonsocial value) 
but also from a confederate’s advice (social 
value) and used a Bayesian reinforcement 
learning model to estimate learning parame­
ters such as trial-by-trial reward prediction 
error, volatility, and outcome probability for 
nonsocial and social values. They found that 
neural activity in the DMPFC, middle tem­
poral gyrus, and TPJ/superior temporal 
sulcus (STS) correlated with reward predic­
tion error for the confederate’s advice, while  
the VS, ventromedial prefrontal cortex 
(VMPFC), and ACC were associated with 
the prediction errors for participants’ own 
experience of reward. VMPFC reflected 
reward probabilities for both participants’ 
experience and confederate’s advice, suggest­
ing that this region integrates nonsocial and 
social information into a common currency 
when making decisions.

In another study on observational learn­
ing, Burke and colleagues (2010) estimated 
vicarious (observed) prediction errors 
extending a standard reinforcement learn­
ing model. They found that the activity in 

the dorsolateral prefrontal cortex (DLPFC) 
reflected the difference between the actual 
and predicted choice of others (action pre­
diction error), and VMPFC was related to 
the difference between the actual and pre­
dicted outcome earned by others (outcome 
prediction error). Similar to this finding, 
Apps, Lesage, and Ramnani (2015) investi­
gated the relationship between instructors’ 
expectations and students’ actions, finding 
that instructors’ ACC, insula, and VMPFC 
tracked prediction errors and the expected 
values resulting from the students’ actions.

Social Norm Learning  
and Conformity

Another important source of social learning 
is normative information from group behav­
ior. People are highly motivated to conform 
to social norms and appear to value fitting in 
over being correct (Asch, 1951). Social norms 
are created and adhered to because people 
want to act effectively in a social environ­
ment and/or preserve social relationships 
(Cialdini & Trost, 1998; Deutsch & Gerard, 
1955). Descriptive norms refer to shared 
expectations of context appropriate behavior 
held by most people and can be learned by 
observing how people generally act in certain 
situations (Cialdini, Kallgren, & Reno, 1991; 
Sherif, 1936). Conformity can arise from the 
rewarding value of sharing approval and 
affiliation with others (Campbell-Meiklejohn, 
Bach, Roepstorff, Dolan, & Frith,  2010) or 
from the fear of punishment for inappropri­
ate behavior (Fehr & Fischbacher, 2004).

Campbell-Meiklejohn and colleagues (2010)  
investigated how social agreement or disa­
greement from others influences one’s 
valuation of music. They did this by asking 
participants to rate their enjoyment of differ­
ent songs before and after receiving feedback 
of agreement or disagreement from other 
“music experts.” This allowed the research­
ers to not only track how much participants 
valued each song, but also to estimate a 
social influenceability parameter Binf  for 
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each participant using a linear regression 
that estimated how song ratings change after 
learning about expert opinions. Participants 
more sensitive to social influence (high Binf ) 
reacted to disagreements from experts with 
greater activity in the insula, dorsal ACC, lat­
eral PFC, and right TPJ. Moreover, the VS for 
participants with high social influenceability 
was maximally activated when their opinions 
conformed with others. In contrast, the VS 
activity decreased in the same situation for 
participants with antisocial influenceability 
(negative Binf ), who decreased their liking 
of songs when experts agreed with their 
opinion. Overall, the authors were able to 
disentangle how participants’ own value rep­
resentations changed as a function of their 
agreement with others’ opinions.

In addition to modifications of value, vio­
lations of social norms may lead to error 
signals as defined in reinforcement learning 
models, that motivate adjustment of actions 
(Chang & Koban, 2013; Montague & Lohrenz, 
2007; Sanfey, Stallen, & Chang, 2014). Studies 
in cognitive control have implicated the ACC 
in conflict monitoring (Botvinick, Cohen, & 
Carter, 2004) and that cognitive and affec­
tive conflicts share similar systems in the 
dorsal ACC (Ochsner, Hughes, Robertson, 
Cooper, & Gabrieli, 2009).

To test how reinforcement learning signals 
support social conformity, Klucharev and 
colleagues (2009) had participants rate faces 
on attractiveness and subsequently view the 
social norm framed as the “average European 
rating.” Discrepancies between individual 
ratings and the normative ratings were asso­
ciated with activations in the rostral ACC 
and deactivations in the nucleus accumbens 
(NACC), and the magnitude of activity in 
these regions predicted whether participants 
changed their behavior to conform to the 
norm on a subsequent rating of the face.

How violations of social norms impact social 
interactions were also investigated by Chang 
and Sanfey (2013). This study examined bar­
gaining behavior using the Ultimatum Game 
(UG; Fig. 17.1A), in which Player A proposes 
a split of an endowment to Player B, who then 

decides whether to accept the proposed split 
or reject the offer, in which case both play­
ers receive nothing (Güth, Schmittberger, 
& Schwarze,  1982). Receiving an offer that 
violated the players’ expectations about 
the descriptive norm was associated with 
increased activity in the left anterior insula, 
ACC, and pre-supplementary motor area 
regions, consistent with an error-monitoring 
process (Fig. 17.1B).

In a related experiment, Xiang et al. (2013) 
provide even stronger evidence for how the 
brain tracks norm violations in the UG. In this 
study, the experimenters manipulated par­
ticipants’ expectations by exposing different 
groups of participants to three different dis­
tributions of offers (high, medium, low). In 
the test phase, all groups of participants were 
given offers from the medium distribution. 
Participants decided whether to accept or 
reject the offers and reported their affec­
tive responses by selecting from a set of 
emoticons. The authors combined an Ideal 
Bayesian Observer model to track how 
beliefs about the social norm are updated 
after each offer with a social preference util­
ity function (Chang & Sanfey, 2013; Fehr & 
Schmidt, 1999) to provide trial-to-trial esti­
mates of the prediction error and variance 
prediction error for a given offer conditional 
on prior beliefs.

Behaviorally, identical offers were rejected  
more frequently when participants ex- 
pected offers from a high distribution 
compared to a low distribution, indicating 
that the social norm manipulation success­
fully changed attitudes towards the offers. 
Results from the fMRI analyses found norm 
prediction errors positively correlated with 
activity in the VS and medial orbitofron­
tal cortex (mOFC), while variance predic­
tion errors were tracked by activities in the 
anterior insula and ACC (Fig. 17.1C). These 
findings suggest that both norm predic­
tion errors and affective prediction errors 
comprise a form of reinforcement learn­
ing and share similar neural circuitry com­
prising the VS, mOFC, anterior insula, and 
ACC (O’Doherty et al.,  2003; Preuschoff, 
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Quartz, & Bossaerts,  2008; Schoenbaum, 
Roesch, Stalnaker, & Takahashi, 2009).

These experiments provide examples of 
how social norms are learned and why people 
conform to them. Norm compliance can lead 
to increases in subjective utility and norm 
violations can result in an error signal that 
contributes to updating beliefs and behavior 
via computations from the VS and the ACC.

Learning About Others

Another area of research involves learning 
about others. For successful social function­
ing, one needs to accurately infer personal 
characteristics (Mende-Siedlecki, Cai, & 
Todorov, 2013; Stanley, 2015), beliefs, and 
intentions of others (Delgado, Frank, & 
Phelps, 2005; Fareri, Chang, & Delgado, 
2015; Hampton et al., 2008; King-Casas et al., 
2005, 2008). Computational approaches 
provide a useful way to understand how the 
human brain dynamically updates beliefs 
about others in a continuously changing 
social environment.

Psychological and neural mechanisms of 
this type of social learning are often stud­
ied using repeated games. For instance, a 
repeated Trust Game (TG; Fig.  17.2) can 
allow two players (investor and trustee) to 
build a trusting relationship with each other. 
Delgado and colleagues (2005) investigated 
neural mechanisms of updating trustworthi­
ness information during this iterated TG and 
found that the caudate nucleus was involved 
in differentiating positive and negative infor­
mation about others. However, this neural 
signal was modulated by participants’ initial 
impression of their partner’s moral character, 
leading them to ignore information incon­
sistent with their initial beliefs. This social 
confirmation bias effect was subsequently 
replicated in other studies using reinforce­
ment learning models (Fareri, Chang, & 
Delgado,  2012; Fouragnan et al.,  2013).  
A hyperscanning fMRI study by King-Casas 

and colleagues (2005) found that the dorsal 
striatum was associated with building repu­
tation about a partner’s reciprocity, reflected 
by trustees’ perceptions of an investor’s 
“intention to trust.” The peak of the “inten­
tion to trust” signal was temporally shifted 
from late to earlier occurrence, resembling 
reward prediction error signals commonly 
observed in standard reinforcement learning 
paradigms.

Chang et al. (2010) used reinforcement 
learning models to describe how initial 
trustworthiness information changes with 
experience in a repeated TG. They formal­
ized trust as a belief about the probability 
of a relationship partner reciprocating and 
found that these beliefs dynamically change 
with experience. Extending this approach, 
Fareri, Chang, and Delgado (2015) exam­
ined how a prior relationship with a partner 
might affect behavior in the game. They pro­
posed a social value model in which partici­
pants learn the probability of their partner 
reciprocating using a reinforcement learning 
model. This probability scales the amount of 
reward they expect to receive if their part­
ner reciprocates. Importantly, this reward 
is composed of their financial incentive and 

PA
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PB: $0
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PB: $4

PA: $2

PB: $2

Keep Trust 

Share Keep 

Figure 17.2  Example of the Trust Game. Player A is 
endowed with $1 and may choose to keep the 
endowment or trust Player B, in which case the 
endowment is multiplied by a factor of 4. Player B 
can then decide to share the multiplied endowment 
with Player A or keep the $4.
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also social incentive that is proportional to 
their partner’s perceived trustworthiness. 
Formally, the probability of trusting partner 
c on trial t  is:

	

Trust t

e

c

P t t P t T
max Tc c c

c

c
1 1 1 5) ( .

e

P t t P t T
max Tc c c

c

c
1 1 1 5) ( .

e
1

	  
(Eq. 17.2)

where 0 1,  is the learning rate on how 
quickly participants update their beliefs, 

0 1,  is the degree of stochasticity in the 
decision, γ  is 1 if the partner reciprocated or 
0 if they defected, P tc 1  is the participant’s 
belief about the likelihood of partner c recip­
rocating on the previous round, Tc is the par­
ticipant’s subjective trustworthiness rating 
for partner c, and 0 5,  reflects the scaling 
of the social value term.

The authors found that this social value 
model provided a better account of partici­
pants’ decisions than a standard reinforce­
ment learning model  (Eq. 17.1) in which 
the initial starting values were biased by 
participants’ initial trustworthiness ratings. 
Moreover, the authors used the predictions 
of the social value model to identify regions 
of the brain that were associated with trial-
to-trial learning and also to find regions that 
correlated with the magnitude of the social 
value signal. Replicating previous work 
(Fareri et al., 2012; Fouragnan et al.,  2013), 
they found activity in the VS significantly 
correlated with trial-to-trial prediction 
errors. Importantly, they found that activ­
ity in the DMPFC and VS significantly cor­
related with the model-derived social value 
metric, providing further validation that the 
model was accurately capturing this psycho­
logical construct (Fig. 17.3).

In addition to trust, learning about others’ 
personal attributes in impression formation 

(Stanley,  2015) and inferring mental states 
during strategic interactions (Hampton et al., 
2008) also provide insight into the neural 
basis of social learning. Stanley (2015) used 
a Bayesian learning model to compare neural 
mechanisms of learning about generosity of 
target figures (social learning) and learning 
about winning probability of a lottery (non­
social learning). The fMRI analyses showed 
that the DMPFC, DLPFC, and right lateral 
parietal cortex were related to prediction 
error signals for both social and nonsocial 
learning, whereas activations in the pre­
cuneus comprised prediction error signals 
more specific to social learning.

Consistent with this finding, Sul et al. 
(2015) compared neural mechanisms of 
reward-based learning for self and other and 
found that VS, precuneus, and posterior STS 
(pSTS; extending to inferior parietal lobule 
and temporal parietal junction) reflected 
general reward prediction errors both for 
self and other, whereas the medial prefrontal 
cortex (MPFC) reflected the chosen value. In 
this study, the degree of spatial segregation 
of the value computation signals between 
the VMPFC and DMPFC for self and other 
reflected individual differences in prosociality, 
such that the more prosocial participants were, 
the greater the overlap between self and other.

In summary, computational research on 
social learning involves learning from and 
about others. Different variants of reinforce­
ment learning models are commonly used to 
formally describe how individuals update and 
integrate social information into their own 
experiences and adapt to a constantly chang­
ing social environment. Prediction error sig­
nals for nonsocial and social learning seem 
to share the same neural substrates includ­
ing ventral and dorsal striatum, and ACC. 
The subregions of MPFC seem to compute a 
common currency for both social and nonso­
cial decision utility, reflecting personal char­
acteristics. Though DMPFC, TPJ, pSTS, and 
precuneus are regarded as “social” regions in 
many studies, the distinction between social 
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learning and nonsocial learning in these re­
gions deserves further research.

Mentalizing and Strategic 
Reasoning

Decisions made in social contexts also involve 
considering the decisions made by conspecif­
ics. However, predicting others’ choices pre­
sents a unique challenge: while behavioral 
outcomes themselves are directly observable, 
intentions are not and therefore must be 
inferred. This process of inferential reason­
ing has most often been called “mentalizing” 
or employing a “theory-of-mind,” whereby an 
individual forms a theory (prediction) about 

the unobservable causes for an observed 
behavior, and uses this theory to guide pre­
dictions about future behavior (Frith & Frith, 
2012; Lee & Seo, 2016; Premack & Woodruff, 
1978).

Early work in social cognitive neurosci­
ence was primarily concerned with iden­
tifying which brain regions subserved this 
type of inferential reasoning (Adolphs, 2001; 
Lieberman, 2007). Utilizing paradigmatic ap- 
proaches from social and moral psychol­
ogy, a reliable network of brain regions was 
quickly identified encompassing the STS, 
posterior cingulate cortex (PCC), and two 
key nodes, namely the TPJ/pSTS and the 
MPFC. The TPJ responds preferentially 
when individuals make inferences about the 

a

b

d e

0.15

0.1

0.05
Computer

Confederate
Friend0

–0.05

–0.1

–0.4

–15

–5

0

5

10

–0.3 –0.2 –0.1

Average mPFC Activity

M
od

el
 D

er
iv

ed
 B

on
us

 V
al

ue
(s

ub
je

ct
 m

ea
ns

 r
em

ov
ed

)

0.0 0.1 0.2 0.3

–0.15

Friend Reciprocate > All Other Outcomes
Average mPFC Response

Defect

M
ea

n
 P

ar
am

et
er

 E
st

im
at

es
 (

ß)

Reciprocate

c

0.15

–8.00

–3.72
8.00A

p<.001, corrected t(25)
3.72

R L

0.1

0.05
Computer

Confederate
Friend

0

–0.05

–0.1

Friend Reciprocate > All Other Outcomes
Average Ventral Striatal Response

Defect

M
ea

n
 P

ar
am

et
er

 E
st

im
at

es
 (

ß)

Reciprocate

–15

–5

0

5

10

–0.1 0.0

Average Ventral Striatal Activity

M
od

el
 D

er
iv

ed
 B

on
us

 V
al

ue
(s

ub
je

ct
 m

ea
ns

 r
em

ov
ed

)

0.1 0.2 0.3

Figure 17.3  Neural representations of social value. (a) Bilateral VS and MPFC are more active when friends 
reciprocate compared to all other outcomes. (b, c) Mean parameter estimates of average MPFC (b) and VS (c) 
activity from the contrast in (a). (d, e) Average activations in MPFC (d) and VS (e) show significant predictive 
relationship with the model-derived bonus values. From Fareri et al. (2015).



Mentalizing and Strategic Reasoning ﻿ 237

beliefs of others (Saxe & Wexler, 2005; Saxe 
& Kanwisher,  2003), such as reckoning the 
intentions of morally questionable actions 
(Young, Cushman, Hauser, & Saxe,  2007), 
trustworthiness of a partner (Behrens et al., 
2008), and making empathic and agentic 
evaluations (Decety & Lamm,  2007). The 
MPFC responds preferentially when distin­
guishing between the thoughts and feelings 
of the self and others (Amodio & Frith, 2006; 
Jenkins & Mitchell,  2011), forming impres­
sions about others (Mende-Siedlecki et al., 
2013; Schiller, Freeman, Mitchell, Uleman, 
& Phelps, 2009), and judging others’ prefer­
ences (Koster-Hale & Saxe,  2013; Mitchell, 
Macrae, & Mahzarin, 2006).

More recently, studies have employed com­
putational modeling to go beyond identify­
ing where in the brain mentalizing-related 
processing occurs to answer how this type 
of processing occurs. By using game theo­
retic approaches from behavioral econom­
ics, investigators can model how individuals 
engage strategic reasoning in both competi­
tive and cooperative contexts. Game theory 
provides a set of solutions to such contexts 
that advise the best strategy an agent should 
follow given complete information. However, 
individuals often diverge from this strategy 
and act according to their subjective beliefs 
about the strategies of others, constrained by 
their own cognitive limitations (Gigerenzer 
& Selten, 2002; Lee & Seo, 2016). For exam­
ple, consider the responder in the UG who 
may either accept or reject a proportion of 
the endowment suggested by the proposer. 
Both players receive the proposed split if the 
responder accepts, but both players receive 
nothing if the responder rejects the offer. If 
players were motivated purely by financial 
interests, the proposer would propose the low­
est possible nonzero offer and the responder 
would accept any nonzero offer (referred to 
as the subgame perfect equilibrium). Instead, 
responders in an UG are highly sensitive to 
both outcomes (payoffs from actual offers 
made) and intentions (knowledge about what 
offers a decider could have made) and incor­
porate both when accepting decisions in the 
UG (Falk, Fehr, & Fischbacher, 2003).

As such, recent efforts to develop models 
of mentalizing have been based on bound­
edly rational theories of cognitive hierarchy 
rather than equilibrium analyses (Camerer, 
Ho, & Chong, 2015; Stahl & Wilson, 1995). 
Such models continue to assume that indi­
viduals choose a utility-maximizing strategy, 
but relax the assumption that individuals are 
consistently correct regarding their predic­
tions about others’ actions (Camerer et al., 
2015). In this way, variance occurs across 
individuals’ strategies based on the depth 
of reasoning they employ (e.g., I believe you 
will choose X; I believe that you believe I 
will choose X; I believe that you believe that 
I believe  .  .  .  etc.). Such models have found 
recent success in explaining the activity 
commonly observed in mentalizing brain 
regions. For example, Coricelli and Nagel 
(2009) had individuals play a Keynesian 
Beauty Contest Game whereby individuals 
were paid commensurate to choosing a num­
ber between 0 and 100 that was M times the 
average of guesses made by all others playing 
the game. Through backwards induction, the 
Nash equilibrium strategy dictates choosing 
0 (e.g., for M  ⅔), yet most individuals chose 
values predicted by a step-by-step reason­
ing of an iterated best reply model ( )50 M k  
where k is the depth of reasoning that an 
individual employed (participants typically 
employed strategies with k between 1 and 3). 
Furthermore, individuals with higher k val­
ues (i.e., greater depth of reasoning) dem­
onstrated greater activity in ventral and 
dorsal regions of the MPFC, what the authors 
referred to as “strategic IQ.”

In a similar study, Bhatt, Lohrenz, and 
Camerer (2010) had individuals engage in 
a bargaining game where buyers provided 
information to sellers regarding the valu­
ation of an item in an attempt to influence 
price setting and negotiate a sale. Because 
sales were only enacted if sellers set prices 
below the true value of the item and buyers 
were free to be as truthful as they wanted, 
the authors were able to establish differ­
ent depths of strategies that individuals 
employed during the game. Consistent with 
a second-level depth of strategic reasoning 
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(i.e., k  2), 20% of players employed a decep­
tive strategy that earned them more money. 
These individuals exhibited stronger activity 
in DLPFC and TPJ during bargaining bluffs 
relative to others, suggesting a role for these 
regions in tracking the degree of influence 
that one individual has on others during a 
strategic interaction.

Hampton et al. (2008), more directly mod­
eled social influence using an fMRI paradigm 
in which individuals played a competitive 
game known as the inspection game. In this 
game, participants played the role of either 
an employer or an employee. The employer 
chose whether to inspect the employee and 
the employee decided whether to work. 
To maximize payoffs, the employer had to 
inspect when the employee was not work­
ing and the employee had to work when the 
employer inspected, but not otherwise. The 
authors fit three different models to indi­
viduals’ decisions: (1) a simple reinforce­
ment learning model in which future actions 
were chosen based on previously successful 
actions, (2) a fictitious play (or elementary 
mentalizing) model in which future actions 
were chosen based on best responses to a 
competitor’s previous actions, and (3) an 
influence model in which future actions were 
chosen based on a prediction of a competi­
tor’s belief regarding one’s own action (i.e., 
incorporating the influence one has on their 
competitor). The experimenters found that 
participants track both their opponent’s 
actions and the influence of their own strat­
egy on their opponent’s strategy confirming 
that mentalizing is a key component of social 
decisions. The MPFC incorporated influ­
ence information and reflected each indi­
vidual’s expectation, while pSTS and VS were 
involved in updating new information by cap­
turing prediction error-like signals, namely 
the difference between expected and actual 
influence. Activations in the MPFC appeared 
to reflect participants belief about their level 
of influence over their partner as activity in 
this region correlated with individual vari­
ability in the degree to which the influence 
model provided a better account of partici­
pant’s behavior compared to the fictitious 
play model. Moreover, activity in pSTS and 
VS covaried with MPFC activity, providing 

evidence that these regions communicate to 
support mentalizing computations.

Yoshida, Dolan, and Friston (2008; Yoshida, 
Seymour, Friston, & Dolan,  2010) built on 
this work to develop a more sophisticated 
“belief inference mode.” In this model, indi­
viduals try to infer the strategy of another 
agent by watching how game states change 
as a consequence of others’ decisions. This 
process allows an agent to infer the depth of 
reasoning k that another agent is utilizing, 
and respond by utilizing a strategy of k  1. 
In other words, their model assumes that an 
individual chooses a strategy by first infer­
ring the strategy in use by the other agent, 
and then responds by picking a strategy that 
uses a “deeper” level of reasoning.

To test their model, they utilized a stag 
hunt game in which individuals worked 
either competitively or cooperatively with a 
computer agent to “hunt” either a low-value 
and easy-to-catch reward (rabbit) or a high-
value but difficult-to-catch reward (stag). In 
order to estimate participants’ inferences, the 
computer agent operated at different levels of 
recursive inference which changed randomly 
throughout the game. By modeling coopera­
tion rates and participants decisions, Yoshida 
and colleagues (2010) were able to infer the 
depth of strategic recursion individuals were 
employing and found that individuals respond 
to strategy changes employed by the computer 
agent. MPFC tracked individuals’ uncertainty 
regarding computer strategies, and DLPFC, 
superior parietal lobule, and frontal eye fields 
tracked the recursive depth of individuals’ 
own strategies, consistent with findings from 
Bhatt and colleagues (2010). The novelty in 
this study lies in explicitly modeling the depth 
of recursion that individuals utilize during 
strategic reasoning (and thereby their beliefs 
about the computer agent’s depth of strate­
gic reasoning) and the dynamic generation of 
beliefs over repeated play.

The ability to infer the intentions of 
others also seems to improve with age. Sul 
et al. (under revision) investigated how 
participants aged between 9 and 23 years 
old responded to multiple rounds of an 
UG in which information about the alter­
native split that the proposer could have 
offered was revealed. In this modified UG, 
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participants could make decisions based on 
an egalitarian strategy (e.g., Was the split  
50/50?) represented using an inequity 
aversion model (Fehr & Schmidt,  1999), 
or alternatively, participants could infer 
the intentions motivating the other play­
er’s decision (e.g., Why did he/she choose 
this offer rather than the alternative?), 
which was modeled using a reciprocity 
model (Dufwenberg & Kirchsteiger,  2004; 
Rabin, 1993). Younger participants used the 
simpler rule-based egalitarian strategy, but 
adolescents shifted to using a more sophis­
ticated intention-based reciprocity strategy 
around 17 years of age. Importantly, the 
degree to which the intention-based reci­
procity strategy was preferred to the egali­
tarian strategy was mediated by cortical 
thinning in the DMPFC and the posterior 
temporal lobes, suggesting that the develop­
ment of these regions is integral in making 
social inferences (Coricelli & Nagel,  2009; 
Güroğlu, van den Bos, & Crone,  2009; 
Lee & Seo, 2016).

While the explicit modeling of mentalizing 
processes is a relatively new research effort, 
findings from these groups demonstrate how 
computational models can be utilized to 
explicitly test theories about both behavioral 
and neural mechanisms. In particular, these 
results and several others (Carter, Bowling, 
Reeck, & Huettel, 2012; Seo, Cai, Donahue, & 
Lee, 2014; Suzuki et al., 2012) demonstrate how 
social information is utilized by brain regions 
involved in mentalizing and strategic reason­
ing, and that this process specifically involves 
estimating the degree of influence one’s own 
decisions have on others’ beliefs and dynami­
cally updating these estimations in order to 
choose optimal actions (Lee & Seo, 2016).

Conclusion

In this chapter, we reviewed a number of 
studies that have employed computational 
modeling to help us understand the neural 
and psychological processes underlying 

A. Learning from others 

B. Learning about others 

C. Mentalizing 
DMPFC TPJ 

VMPFC 

VS 

Insula ACC VTA 

pSTS

Figure 17.4  Meta-analysis representation of commonly activated regions for social learning and mentalizing. 
(A) Regions commonly activated for observational/vicarious learning and social conformity by norm prediction 
error signals tracked in VS, VTA, ACC and VMPFC. (B, C) Inferring other people’s intentions or characteristics 
recruit DMPFC, TPJ, and pSTS also incorporating valuations represented in the VMPFC that are updated via 
prediction error signals from VS and ACC. Brighter regions indicate greater common activation as percentage 
overlap across studies. See Table 17.1 for list of studies included in the analysis.
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social cognition in the context of learning 
and decision making. The bulk of the work to 
date has leveraged modeling frameworks 
from economic utility theory and reinforce­
ment learning. Overall, several consistent 
findings have begun to emerge. The DMPFC, 
PCC, and TPJ appear to be reliably comput­
ing processes related to inferring others’ 
mental states (Figure 17.4B, C). The VMPFC 
and VS are involved in representing mone­
tary or social value, while the VTA and VS as 
well as the ACC and insula are involved in 
calculating different types of prediction 
errors (Figure 17.4A). The insula and dorsal 
ACC appear to be involved in errors involving 

stronger negative affective responses from 
norm violations, while the VTA and VS are 
more reliably involved in learning probabili­
ties (Table 17.1 includes all studies included 
in this analysis).

The use of computational modeling in the 
various studies discussed in this chapter has 
permitted researchers to formally test spe­
cific theories that describe the functional 
processing in these brain regions. In each of 
these cases, this approach involved outlining 
a mathematical account of a possible strategy 
utilized by participants (e.g., recursive rea­
soning) or learning process performed by a 
brain region (e.g., reinforcement learning). 

Table 17.1  List of studies included in Fig. 17.4.

Study
Learning from 

others
Learning about 

others Mentalizing

Apps et al. (2015)
Behrens et al. (2008)
Bhatt et al. (2010)
Boorman et al. (2013)
Burke et al. (2010)
Campbell-Meiklejohn et al. (2010)
Cooper et al. (2012)
Coricelli & Nagel (2009)
Delgado et al. (2005)
Fareri et al. (2012)
Faereri et al. (2015)
Fouragnan et al. (2013)
Hampton et al. (2008)
Hill et al. (2016)
Jones et al. (2011)
King-Casas et el. (2015)
Klucharev et al. (2009)
Lin et al. (2011)
Stanley (2015)
Sul et al. (2015)
Sul et al. (Under Review)
Xiang et al. (2013)
Yoshida et al. (2010)

total number of studies 7 11 5

Coordinates were dilated into a 15-mm-radius sphere and overlapped to generate Fig. 17.4.
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The work discussed here demonstrates the 
power of the computational approach to draw 
inferences beyond those afforded by simple 
social psychological paradigms, which often 
lack mechanistic explanations.

Overall, we believe that the applica­
tion of computational techniques to the 

study of the social and affective brain is an 
exciting endeavor with immense potential  
for growth and innovation. We encourage 
more researchers from both computational 
and social disciplines to consider collabora­
tively developing new approaches to contrib­
ute to this enterprise.
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