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Translational neuroscience is a field at the intersection of basic 
neuroscience and clinical applications. Basic neuroscience is con-
cerned with understanding how brain activity gives rise to thoughts,  
feelings and behavior, whereas clinical applications are concerned 
with developing tools that are useful for clinical decision-making and 
therapeutic development. The advent of functional neuroimaging 
nearly 30 years ago generated great optimism about its potential for 
both revolutionizing our understanding of the physical basis of mind 
and delivering clinically useful tools. While much progress has been 
made on the former goal1, few results and models from functional 
neuroimaging have been incorporated into clinical practice2. This 
paper explores some of the scientific reasons why this is the case and 
presents a framework for moving forward.

Over these decades, a wealth of translational neuroimaging studies 
have identified brain features—largely measures of activity in specific 
brain regions—that predict health-related outcomes. These outcomes 
include current diagnostic categories (for example, major depressive 
disorder3), as well as measures of symptoms (for example, anhedo-
nia4), cognitive and affective component processes (for example, risk 
aversion5) and cognitive performance (for example, sustained atten-
tion6). Such outcomes are not currently considered ‘disorders’, but 
they are features that cut across disorders and influence healthy men-
tal function7. Brain correlates of these outcomes could provide a basis 
for reconceptualizing diagnostic categories, identifying features of 

neuropathology and assessing healthy brain function beyond current 
clinical diagnostic categories. In this sense, cognitive neuroscience and 
translational neuroimaging share the common goals of establishing  
strong associations between brain measures and both subjective expe-
rience and objective behavior.

Early translational neuroimaging efforts were based on traditional 
brain mapping approaches. Built on a historical foundation of lesion 
studies8 and theories of modularity9, the fundamental goal of early 
neuroimaging studies was to understand what functions and processes  
are encoded in isolated, target brain regions of interest. Standard 
parametric mapping scales this approach up to a massive number 
(50,000–350,000) of separate tests in local regions or ‘voxels’ to create  
whole-brain maps (Fig. 1a). This is currently the most popular 
approach to neuroimaging. Early translational studies likewise iden-
tified isolated brain regions important for clinical disorders and 
symptoms. Researchers discovered relationships between subgenual 
anterior cingulate cortex and depression3, thalamus and periaqueduc-
tal gray with chronic pain10, basal ganglia with obsessive-compulsive 
disorder11 and subthalamic nucleus with Parkinson’s disease12, among 
many others. Many contemporary studies are still aimed at identify-
ing brain ‘hot spots’ predictive of health-related outcomes13. These 
associations can be useful, if the isolated features are diagnostic of and 
directly related to the underlying pathology. However, several clinical 
trials targeting these local regions with neuromodulation therapies, 
such as deep-brain stimulation and neurofeedback, have failed, par-
ticularly for depression and pain10,14,15. In addition, as we explain 
below, there is strong reason to suspect that these associations do not 
provide a sufficiently complete description of the relevant neuropa-
thology to be clinically actionable.

A central problem is that local brain-mapping was not designed with 
translational goals in mind. Its main goal is not to provide a complete 
model of symptoms and behavior but to test hypotheses about struc-
ture–function associations. The focus is on whether there are any effects 
in one or more brain regions, rather than on whether the effects are large 
enough to have clinical utility16. This is in line with traditional goals of 
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Despite its great promise, neuroimaging has yet to substantially impact clinical practice and public health. However,  
a developing synergy between emerging analysis techniques and data-sharing initiatives has the potential to transform the role  
of neuroimaging in clinical applications. We review the state of translational neuroimaging and outline an approach to developing 
brain signatures that can be shared, tested in multiple contexts and applied in clinical settings. The approach rests on three 
pillars: (i) the use of multivariate pattern-recognition techniques to develop brain signatures for clinical outcomes and  
relevant mental processes; (ii) assessment and optimization of their diagnostic value; and (iii) a program of broad exploration 
followed by increasingly rigorous assessment of generalizability across samples, research contexts and populations. Increasingly 
sophisticated models based on these principles will help to overcome some of the obstacles on the road from basic neuroscience 
to better health and will ultimately serve both basic and applied goals.
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understanding localized brain function but not with providing a suf-
ficient brain-level description of a behavior. Another limitation is that 
a typical voxel—the smallest spatial unit of analysis—contains approxi-
mately 5.5 million neurons17 with diverse properties and functions18, 
particularly in the heteromodal brain areas most often associated with 
mental health disorders19,20. This lack of functional specificity creates 
problems in making inferences about mental processes, including symp-
toms, based on brain activity21. Brain mapping is designed to permit 
the inference that brain region B is activated conditionally on stimulus 
(or symptom) S and assesses the probability P(B|S). This does not allow 
one to make the reverse inference that stimulus S must have occurred 
given activation of region B, related to P(S|B) (ref. 22). The latter is what 
provides inferences about mental states and clinical conditions, but mak-
ing such inferences requires a different analysis paradigm. Lastly, many 
features of neurologic and psychiatric disorders (e.g., pain, negative 
emotions, cognitive and social processes) are likely encoded in distrib-
uted neural systems involving networks of many regions23,24 (Fig. 1b).  
Thus, many clinically relevant outcomes, including core features in the 
Research Domain Criteria (RDoC)7, may not be measurable in isolated 
regions even in theory.

Recently, a new trend, predictive modeling, has emerged to address 
these issues. This approach uses pattern recognition techniques 
(or ‘machine learning’) to develop integrated models of activity 
across multiple brain regions (i.e., brain signatures) to predict clini-
cal outcomes25–27 (Fig. 1c). This approach might be referred to as 
‘translational neuroimaging 2.0’, as it is qualitatively distinct from 
conventional brain mapping and has several important benefits. 
First, the direction of inference is reversed relative to conventional  

mapping: brain features (for example, structure, activity or connectivity)  
comprise a set of predictors, and behavioral or clinical variables com-
prise one or more outcomes. Second, predictive models integrate all 
available brain data into a single ‘best guess’ about the outcome, pro-
viding focused tests that avoid multiple comparisons and increase 
statistical power when evaluating their diagnostic utility16. Third, the 
diagnostic value of predictive models is typically tested by evaluat-
ing their performance in new, out-of-sample individuals26 (Fig. 1d),  
providing valid estimates of effect size and clinical significance. 
Fourth, multivariate predictive models can capture information 
across multiple spatial scales26,28,29, ranging from mesoscale infor-
mation to large-scale information distributed across multiple brain 
systems. Much mesoscale information is encoded in functional struc-
tures smaller than a voxel, but in large neural populations distributed 
unevenly across voxels, allowing functional MRI (fMRI) patterns to 
be sensitive to this distribution (often called ‘fMRI hyperacuity’)30,31. 
This can result in large predictive effect sizes (and accuracy) in 
explaining outcomes, enhancing the models’ clinical significance. 
This new approach is also synergistic with recent trends toward the 
aggregation and sharing of large-scale neuroimaging data sets32.

In this paper, we review studies that use the predictive modeling 
approach to predict clinical outcomes and ask what is needed for 
the next generation of advances. Despite increasing interest in devel-
oping clinically useful biomarkers based on multiple neuroimaging 
modalities33, many challenges still remain to be solved. These include 
developing sensitive and specific models that generalize across studies 
and heterogeneous populations; developing predictive models that 
build on and contribute to neuroscientific theory; and resolving issues  
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Figure 1 Standard mapping versus predictive modeling. (a) Traditional brain mapping, often called mass-univariate analysis or voxelwise encoding model. 
Brain maps are constructed by conducting massive number of tests on brain voxels one at a time. (b) An example showing small effect sizes (here, explained 
variance) when one brain region is considered in isolation and larger effect sizes for a multivariate model. Chang et al. 24 showed that local regions, including 
amygdala, anterior cingulate cortex (ACC), insula or searchlights, explained much less variance in experienced negative emotion than a whole-brain predictive 
model. (c) Predictive modeling explicitly aims to develop brain models that are tightly coupled with target outcomes. w1, w2, … wn represent predictive 
weights across voxels. (d) Predictive model development and prospective testing. Here, a predictive map (


w ) comprised of predictive weights across voxels  

is developed based on a training sample (i.e., a group of individuals) and tested on independent test samples (i.e., new individuals). The weights specify  
how to integrate brain data to produce a single prediction about the outcome, which could be continuous or categorical. In this example, calculating the 
dot product between the predictive map and the test images—a weighted sum of activity across the test image (


b ), with the predictive map specifying the 

weights (

w )—generates a predicted outcome for each participant. The sensitivity, specificity and other properties of the predictive map are estimated from 

test samples. Data in b from Chang et al.24.
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with proper validation and quality control in multisite studies. 
Machine-learning algorithms and big data approaches will not, in 
themselves, be enough to address all these challenges. Rather, brain 
models should be developed and validated within a systematic 
biomarker development framework, treating brain models as sharable 
‘research products’ that can be tested and annotated across research 
groups to demonstrate generalizability across samples, research con-
texts and populations. This new way of thinking about neuroimaging 
results integrates ideas from machine learning, big data, reproducible 
research and open science to bring translational goals within reach.

Clinical predictive modeling: state of the field
The value of predictive modeling aided by machine learning has 
grown rapidly for the last decades in translational neuroimaging,  
with over 500 papers using multivariate predictive models (Fig. 2a). 

This growth parallels a rapid and transformational development 
in the use of machine learning across diverse data-rich applica-
tions, including finance, genetics, security, marketing, games and  
information technology34,35. Some of the earliest work developing 
brain signatures for disease states came from neurology, particularly 
dementia studies36,37, which emphasizes objective signs of pathology. 
Studies of Alzheimer’s disease (AD) and related dementias remain 
the most prevalent, but the predictive mapping framework has been 
extended to other neurological disorders, such as Parkinson’s dis-
ease and pain disorders, as well as to an impressive array of mental  
health disorders, including psychosis, depression, autism, attention 
deficit hyperactivity disorder (ADHD), bipolar disorder, anxiety dis-
orders and post-traumatic stress disorder (Fig. 2b).

Sample sizes have also rapidly increased across the last decades, 
with studies on the order of 1,000 individuals appearing since 2010 
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Figure 2 A snapshot of translational neuroimaging using multivariate predictive models. We searched PubMed for original neuroimaging research articles 
(including EEG, positron-emission topography (PET), MRI, diffusion tensor imaging (DTI) and arterial spin labeling (ASL)) published between 1983 and 
January 2016. The search terms can be found via this link: http://goo.gl/N7oh0i. Nonhuman and nonclinical studies were excluded, as well as those that 
did not employ multivariate pattern recognition. The initial search yielded 2,767 studies, of which 536 studies were selected based on review of their 
abstracts. Full-text review was used to select 475 studies that included 615 classification or predictive maps. (a) Top: growth of pattern recognition studies 
in translational neuroimaging since 2004. Bottom: growth of sample sizes in translational neuroimaging studies. The y-axis shows the largest sample 
size among studies published each year. (b) Breakdown of studies by diagnostic category. PTSD, post-traumatic stress disorder. ADHD, attention deficit 
hyperactivity disorder. (c) Uses of pattern recognition models. ‘Diagnosis’ refers to patient vs. control classification and ‘risk group’ to classification of  
groups at high risk (for example, relatives of people with disorders) vs. controls. ‘Symptom’ refers to prediction of continuous symptom scores. ‘Subtype’ 
refers to identification of subgroups of patients based on brain patterns. ‘Prognosis’ and ‘treatment response’ refer to predictions of individual differences 
in disease progression and response to an intervention, respectively. ‘Component process’ studies identify predictive models for basic cognitive or affective 
processes and apply those to classifying patient groups or to predicting symptoms in patients. (d) Precision-weighted accuracy, based on the square root 
of the sample size, for patient vs. control classification in model-development samples. Here we show classification accuracy only for patient vs. control 
classification, which was the most common use across disorders (75% of predictive models). The size of the circles shows the precision estimates, with 
larger circles indicating larger samples and more precise estimates. Accuracy was nearly always estimated using cross-validation. (e) Classification results 
from prospective testing on independent data sets. Only a small minority of studies report prospective tests. Lower accuracy in independent tests is indicative 
of bias in cross-validated accuracy estimates from training samples. Accuracy is lower in most cases reviewed here, with AD classification showing least 
evidence for bias. (f) Diagnostic classification accuracy as a function of sample size for six types of disorders. As the estimates from the largest studies  
are the most precise, they are most representative of the true accuracy. Across disorders, very high classification accuracy is reported in some small  
studies, but these have not been replicated in prospective tests. With a few exceptions, accuracy values for large-sample studies are much more modest. 
These observations point to the need for improvements in statistical model development, data aggregation and prospective testing of promising models  
across multiple, diverse samples. ©
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(Fig. 2a). These large-scale studies have been made possible by the 
development of research consortia committed to aggregation and 
sharing of data across research groups32. Such efforts include the 
Alzheimer’s Disease Neuroimaging Initiative (ADNI), Autism Brain 
Imaging Data Exchange (ABIDE), Parkinson’s Progression Markers 
Initiative (PPMI) and others (Table 1). This is a promising direction 
for the field, as it promotes (i) model development on large samples,  
which can increase statistical power; (ii) development of models 
based on multisite samples, which are more likely to generalize across 
scanners and commonly encountered variations in study procedures;  
and (iii) tests on independent data sets with different characteristics 
(for example, different population demographics).

Most studies have focused on diagnosis, identifying brain signa-
tures that discriminate patients from healthy controls (75% of the 
615 predictive models in our survey; Fig. 2c). These studies aim to 
establish objective signs of disease pathology. A common objection 
to these studies is that such models simply recapitulate existing diag-
noses and therefore cannot move beyond them. However, the goal 
of such studies is not to replace existing diagnostic tools but rather 
to establish a meaningful neurobiological basis for the disorder of 
interest, supporting the development of new clinical measures and 
therapeutics. If a brain model does not differentiate patients from 
controls or predict symptoms, it is unclear whether it is a model of 
the relevant clinical pathology at all.

Importantly, some studies (25% of the models in our survey; Fig. 2c) 
have begun to develop brain models for more difficult classification 
and prediction problems not easily addressed using existing clinical 
measures. These include neuroimaging models for risk assessment, 
early detection, predicting conversion to full-scale disorders, differen-
tial diagnosis, subtyping of patients and predicting treatment response. 
Developing such models could be challenging but will potentially pro-
vide useful brain measures and new disorder categories that will even-
tually help treatments. Here we review some example studies.

Risk assessment, conversion prediction and early detection. 
Neuroimaging models can be used to assess who is at risk, predict 
who will later convert to a disease state in advance of its onset and 
detect patients in early stages of disease38–42. If successful, these  
models could provide a basis for early intervention, which can poten-
tially prevent or even reverse the course of disease43,44.

This type of research has been most active and successful in AD 
mainly because ADNI has collected longitudinal data from partici-
pants with mild cognitive impairment, which is a transitional state 
between AD and normal aging. The Spatial Pattern of Abnormality for 
Recognition of Early Alzheimer’s Disease (SPARE-AD) index is one 
of the most promising models. SPARE-AD is a pattern classifier based 
on spatial patterns of brain atrophy measured by structural MRI45 
and indicates the presence of a brain atrophy pattern characteristic 
of AD. SPARE-AD scores predict subsequent cognitive decline45,46 
and transition to AD47.

Predictive models have also been developed in some other disorders, 
including psychosis and depression. For example, pattern classifiers 
based on structural MRI were developed to discriminate individuals  
at risk for psychosis from healthy controls and to predict which 
individuals would transition to psychosis and which would not40. 
However, these models have yet to be independently validated.

Differential diagnosis and subtyping. Neuroimaging models can 
also be used for differential diagnosis48–51 and patient subtyping  
(or ‘stratification’)52–55. These models can provide important infor-
mation about the relationships among disorders and symptoms at 
the biological level, helping identify subgroup structures that are not 
reflected in current diagnostic categories but are potentially informa-
tive about treatment selection.

As many mental and neurologic disorders are comorbid, brain-
based differential diagnosis can help identify distinguishing features 
of neuropathology and provide new ways of examining overlap across 

Table 1 Research consortia for neuroimaging data sharing in translational neuroimaging
Resource Initials Clinical groups Imaging modality Web address

Data-sharing platforms
 International Data-sharing Initiative INDI http://fcon_1000.projects.nitrc.org/ 
  Neuroimaging Informatics Tools and Resources 

Clearinghouse
NITRC http://www.nitrc.org/ 

 Laboratory of Neuro Imaging Image & Data Archive LONI IDA https://ida.loni.usc.edu/login.jsp 
 Collaborative Informatics and Neuroimaging Suite COINS http://coins.mrn.org/ 
 National Alliance for Medical Image Computing NA-MIC http://wiki.na-mic.org/Wiki/index.php/Main_Page 
 Open functional Magnetic Resonance Imaging OpenfMRI https://openfmri.org/ 
Consortium or repository
 Autism Brain Imaging Data Exchange ABIDE Autism rs-fMRI http://fcon_1000.projects.nitrc.org/indi/abide/ 
 Attention Deficit Hyperactivity Disorder-200 ADHD-200 ADHD rs-fMRI http://fcon_1000.projects.nitrc.org/indi/adhd200/ 
 Alzheimer’s Disease Neuroimaging Initiative ADNI Alzheimer’s Multimodal, including 

sMRI, fMRI, PET
http://adni.loni.usc.edu/; accessible through IDA  

  Australian Imaging, Biomarkers & Lifestyle  
Flagship Study of Aging

AIBL Alzheimer’s Multimodal, including 
sMRI, PET

https://aibl.csiro.au/; accessible through IDA

 Open Access Series of Imaging Studies OASIS Alzheimer’s sMRI http://oasis-brains.org/ 
  international Study to Predict Optimized  

Treatment for Depression
iSPOT-D Depression Multimodal, including 

EEG, dMRI, fMRI, sMRI
http://www.brainresource.com/home.html 

 MIND Clinical Imaging Consortium MCIC Schizophrenia Multimodal, including 
dMRI, fMRI, sMRI

http://coins.mrn.org 

 Center of Biomedical Research Excellence COBRE Schizophrenia sMRI, rs-fMRI http://fcon_1000.projects.nitrc.org/indi/retro/cobre.html 
 function Biomedical Informatics Research Network fBIRN Schizophrenia fMRI, sMRI http://www.schizconnect.org/ 
 Parkinson’s Progression Markers Initiative PPMI Parkinson’s Multimodal, including 

dMRI, fMRI, sMRI, PET
http://www.ppmi-info.org/ 

 Pain and Interoception Imaging Network PAIN Pain Multimodal, including 
dMRI, fMRI, sMRI

http://www.painrepository.org/ 

 OpenPain Openpain Pain fMRI http://www.openpain.org 

Note: dMRI, fMRI and sMRI refer to diffusion-weighted, functional and structural MRI, respectively; rs-fMRI refers to resting-state fMRI.
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disorders. For example, Tang et al. used fluorine-18-labeled fluorode-
oxyglucose positron-emission tomography (FDG-PET) data to dif-
ferentiate patients with idiopathic Parkinson’s disease, multiple system 
atrophy and progressive supranuclear palsy48. Imaging-based classifi-
ers achieved high accuracy in differential diagnosis (91–98% positive 
predictive value), whereas movement disorder specialists blinded to 
the imaging-based diagnosis reached the final clinical diagnosis only 
after two additional years of clinical follow-up.

Brain-based subtyping of patients can identify groups of patients, or 
‘biotypes’, with differential disease course or treatment response52,55. 
This is an inherently difficult problem, as the ‘ground truth’ about how 
many subtypes are useful and who belongs in which group is unknown. 
This type of ‘unsupervised’ learning problem typically requires large data 
sets, preferably across multiple diagnoses; thus, there are only a few such 
studies. One study grouped psychosis patients—including 1,872 partici-
pants with schizophrenia, schizoaffective disorder, and bipolar disor-
der—into three transdiagnostic biotypes based on neuropsychology and 
electroencephalogram (EEG) data53. Another recent study used fMRI 
connectivity to group 458 depressed participants into four depression 
biotypes55 that were differentially responsive to transcranial magnetic 
stimulation. Such models provide typologies for diagnosis and treatment 
that complement existing typologies based on clinical symptoms2,52.

Predicting treatment outcome. Another use of brain models is the 
customization of treatment based on a patient’s brain measures, an 
endeavor central to ‘precision medicine’. In many areas of medicine, 
different kinds of pathology can give rise to the same clinical symp-
toms; the pathology, not the symptoms, guides effective treatment. 
For example, emerging cancer treatments are based on the cancer’s 
molecular biotypes rather than standard typologies based on gross 
signs and location56,57. Likewise, studies using brain measures to 
predict who will respond to a particular treatment can identify brain 
biotypes useful for guiding treatment.

Most extant neuroimaging studies predicting treatment response—16 
of the 22 studies in this category we surveyed—focused on depression and 
anxiety disorders58–60. One recent study, based on fMRI responses during 
fear conditioning, identified a distributed activity pattern with 82% accu-
racy in discriminating panic disorder patients who responded to cogni-
tive behavioral therapy (CBT) from those who did not58. Another study 
used a regression-based method to predict individual differences in the 
magnitude of CBT effects59. A distributed pattern of brain responses to 
angry versus neutral faces explained 41% of the variance in CBT benefit. 
Only a handful of studies predict responses to other treatments, including 
electroconvulsive therapy61, transcranial magnetic stimulation55,62 and 

drugs63,64. Likewise, a small set of studies predict treatment responses in 
other disorders, including schizophrenia63 and Parkinson’s disease64.

A critical evaluation of clinical predictive modeling 
The studies surveyed above offer hope for understanding the neuropa-
thology of brain disorders and providing useful clinical applications. 
However, there are some crucial ways in which modeling efforts must 
mature in order to realize this potential. In this section, we discuss 
challenges and recommendations with respect to four desirable char-
acteristics65: diagnostic value, neuroscientific validity, deployability 
and scalability, and generalizability across contexts and populations.

Diagnostic value. For a brain measure to serve as a marker for  
an outcome, it must be diagnostic of that outcome at the individual-
person level. Diagnostic models are sensitive and specific measures  
of the outcome. Sensitivity relates to how robustly the meas-
ure responds (i.e., is activated above some predefined threshold)  
when the outcome is present. Specificity relates to whether the meas-
ure responds only in the presence of the target outcome and not 
to others. When moving from assessing the diagnostic value of a 
brain measure in research settings to deploying it for clinical use, it 
is important to consider both the positive and negative predictive 
values. These predictive values depend on the base rates of the out-
come as well as on sensitivity and specificity33,66. It is also important 
to consider the relative clinical and societal costs of false positive 
and negative errors when establishing thresholds for when brain 
markers are considered ‘active’. These concepts can also be extended 
to continuous outcomes like symptom severity, for example, using 
effect sizes.

Formal evaluation of the sensitivity and specificity of brain mod-
els is a relatively new concept that emerged along with predictive 
modeling as part of translational neuroimaging 2.0. It is important 
not only for establishing clinical utility but also for identifying the 
construct67—the theoretical category of mental events, disorders, or 
performance—that particular brain patterns measure.

Potential biases in accuracy. Measures of diagnostic value in current 
studies are subject to potential pitfalls that need to be addressed as the 
field progresses. As Figure 2d shows, model accuracy varies substan-
tially across published studies, with extremely high rates (near 100%) 
in each diagnostic category. This seems to provide cause for opti-
mism, but there are reasons to be skeptical, and the pattern of results 
across studies points to the need for further rigorous testing. First, 
near-perfect accuracy is implausible, considering the low reliability 

Table 2 Named multivariate models in translational neuroimaging
Name Initials Predictive of Features Algorithms Refs

Ordinal regression characteristic index of dementia ORCHID Progression of AD sMRI Ordinal regression with Gaussian process  38
Spatial pattern of abnormality for recognition of early  
 Alzheimer’s disease

SPARE-AD Early detection of AD sMRI SVM with RAVENS methods 124

Alzheimer’s disease pattern similarity AD-PS Risk assessment for AD sMRI Regularized logistic regression 125
Structural MRI-based brain amyloidosis score sMRI-BAS Amyloid beta positive sMRI Partial least squares 126
Structural abnormality index STAND Diagnosis of AD sMRI SVM 127
Parkinson’s disease-related pattern PDRP PD status FDG-PET Spatial covariance analysis  95
Parkinson’s disease-related cognitive pattern PDCP Cognitive dysfunction in PD FDG-PET Spatial covariance analysis 128
Parkinson’s disease-related tremor pattern PDTP Tremor in PD FDG-PET Spatial covariance analysis 129
Multiple-system atrophy-related pattern MSARP MSA status FDG-PET Spatial covariance analysis 130
Corticobasal degeneration-related pattern CBDRP CBD status FDG-PET Spatial covariance analysis 131

Note: these models can be applied prospectively to new individuals and data sets to generate predictions about clinical status, symptoms and future outcomes. Their levels of 
diagnosticity, generalizability and ease of application vary, as do the amounts of prospective testing done to date. However, each of these constitutes a research product that can 
be shared and characterized across laboratories. CBD, corticobasal degeneration; MSA, multiple-system atrophy; PD, Parkinson’s disease; RAVENS, regional analysis of volumes 
examined in normalized space; SVM, support vector machine.
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of many clinical diagnoses themselves68. For example, the inter-rater 
reliability of a diagnosis of major depression is very low, κ = 0.28  
(ref. 68), which means that if one clinician diagnoses depression, a 
second clinician will agree only about 50% of the time. The average 
diagnostic accuracy over 30 brain models for depression included in 
our survey was high (86.7%). While it is possible that brain measures 
can be more stable and reliable than symptoms they are associated 
with55, the overall pattern indicates likely bias.

Another standard way of assessing bias is to compare accuracy in 
small and large studies. As variability in accuracy estimates shrinks 

with sample size, the distribution of accuracy in small studies should 
form a ‘funnel’ distributed symmetrically around those of the large 
studies; asymmetries indicate bias. Our survey reveals evidence for 
such bias in predictive mapping studies (Fig. 2f). In AD, classifica-
tion accuracy in large-scale studies (for example, n > 500) converges 
on ~90%, but in other areas, such as autism and ADHD, large-scale 
studies show substantially lower accuracy. Though there are some 
exceptional large-scale studies with very high accuracy39,69–71, none 
of these models have been prospectively tested on independent data 
and thus await independent validation.

Brain signature development and validation
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Figure 3 Brain signature development and validation. (a) In this process, broad exploration is the first step. Just as drug development involves screening 
many candidate drugs, exploring multiple approaches and models is important for identifying promising biomarkers. The most promising models must be 
tested in independent samples to demonstrate their diagnostic accuracy. During characterization, promising candidate biomarkers should show robust 
replications of findings (for example, high sensitivity and specificity) across multiple independent samples, laboratories, scanners and research settings.  
This requires tests in larger, more definitive studies, which can eventually promote identification of these biomarkers as surrogate measures and as 
endpoints in their own right. (b) Starting with many candidate models, the most promising ones garner support and are carried forward with increasing 
levels of evidence. In the development phase, models can be developed based on one study sample and model performance can be estimated using cross-
validation. In the prospective validation phase, findings and model performance (i.e., sensitivity, specificity and predictive value) are replicated by applying 
models to new, independent samples of participants. In the generalization phase, findings and model performance are tested across multiple laboratories, 
scanners and variants of testing procedures to assess the models’ robustness and boundary conditions. In the population-level phase, large-scale tests 
assess the model’s performance when it is applied to diverse populations and test conditions, and additional moderators (i.e., age, race, culture, gender) 
and boundary conditions are identified in this phase. In this illustration, colored blocks denote the different phases, and black lines indicate hypothetical 
candidate models. Within each phase, a model can be more or less thoroughly evaluated and more or less successful at establishing utility. This variability 
is denoted graphically by the variable locations of dots for each model within each phase. A survey of empirical literature to date reveals that only 9% of 
neuroimaging-based models go beyond the initial development phase. Some notable exceptions include the named models shown here, which have been 
tested prospectively on new samples (see Table 2 for details and abbreviations).
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Such optimistic biases can be inadvertently introduced in every step 
of model fitting and testing. Among other problems, accuracy will be 
inflated if the data used to train the predictive model and test its accu-
racy are not truly independent, even when cross-validation is used to 
test nominally out-of-sample participants26,72. Some studies perform 
analysis procedures—e.g., denoising, scaling, component analyses, 
feature selection—across the entire data set before splitting it into 
training and testing data, creating dependence and thus optimistic 
biases in accuracy. Other studies test multiple learning algorithms 
on a data set and then pick the best one, which results in ‘overfitting’, 
an optimistic bias related to model flexibility.

A good way to reduce bias is to prospectively test a model on a new 
sample, without changing any of the model parameters. Testing the 
model on a completely independent sample eliminates data-dependence  
bias, and testing only one final model on the new data set eliminates 
model-flexibility bias. In our survey, only 9% of studies tested brain 
models on one or more independent data sets (Fig. 2e). These were 
most common in studies of AD; encouragingly, prospective tests in 
this field yielded comparable diagnostic accuracy, indicating relatively 
little bias. However, accuracy in prospective tests of psychosis, ADHD 
and pain were markedly lower than for tests on the model-development  
sample, indicating substantial optimistic biases in cross-validated 
results. Clearly, prospective tests with properly held-out data are critical.  

In machine learning competitions, test data are typically held  
in escrow, and a team is only allowed to submit a single model for 
testing. Such data escrow practices would increase confidence in the 
diagnostic accuracy levels reported in published studies.

Recognizing the need for held-out samples tested only once also 
suggests a different use of consortium and multisite data sets. Of the 
multisite studies in our survey, 80% did not reserve hold-out test data 
for prospective testing. Thus, though these studies are large, they are 
not robust against overly optimistic biases caused by data dependence 
and overfitting. Considering prospective testing in the early stages of 
study design and analysis planning would move the field forward.

Testing specificity over multiple alternatives. Most current clinical stud-
ies evaluate brain models’ sensitivity and specificity for one patient 
group relative to controls. However, specificity can and should be evalu-
ated relative to a defined set of multiple alternatives67, not to only one. 
For example, a model’s specificity to depression can be high relative 
to schizophrenia or autism but low relative to other mood disorders. 
Therefore, testing sensitivity, specificity, positive predictive value, and 
so on, should be an open-ended process. There are many potential com-
parisons among diagnoses, comorbid conditions, symptoms and other 
outcomes73. This testing process will be greatly facilitated by large-scale 
data that include multiple alternative disease groups and conditions.
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Figure 4 Future directions. (a) The direct prediction approach, in which brain features are mapped to clinical diagnostic categories or symptoms directly. 
(b) The component process approach, in which brain features are mapped to basic component processes, such as sustained attention load, memory load, 
positive or negative affect, pain and others. By introducing this additional layer, brain signatures can have implications for behavior and function beyond 
patient status or current diagnostic categories. This new level of analysis provides a way of understanding the nature of dysregulated brain processes, 
assessing risk factors for brain disorders, and understanding and predicting treatment responses. Rather than constructing one brain marker per disorder, 
component models provide a set of basis processes that are combined in different ways in different disorders. By analogy with color, three components  
(red, green and blue) can be combined in different ways to form a virtually infinite number of colors. (c) The NPS is a signature for one such component 
process, evoked somatic pain23, that is potentially dysregulated in multiple disorders. The NPS is defined by brain-wide, mesoscale patterns of fMRI activity 
across multiple pain-related regions and can be prospectively tested on new individuals and datasets. This allows its properties to be characterized across 
studies, improving understanding of the types of mental processes and experiences it represents. Top: the NPS pattern map thresholded at q < 0.05, false 
discovery rate (FDR)-corrected for display purposes; the unthresholded patterns in selected regions (dACC, dorsal ACC; dorsal posterior insula, dpINS; 
secondary somatosensory cortex, S2) are visualized in the insets. Bottom: the NPS’s ‘psychological receptive field’, which visualizes conditions that activate 
(sensitivity, in orange and red) or do not activate (specificity, in gray and black) the NPS. Dark colored conditions (in red and black) are from published 
results23,24,115–118, and light colored conditions (in orange and gray) are from unpublished, preliminary results (data on cognitive demand were tested by 
C.-W.W.; visceral and vaginal pain data were tested by T.D.W.). Characterizing the NPS’s sensitivity and specificity across these conditions and others aides in 
understanding what NPS alterations in clinical disorders mean from a psychological and functional perspective. In the future, we envision clinical biomarkers 
composed of sets of interpretable, well characterized models of basic cognitive and affective processes.
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Neuroscientific validity. Neuroscientific validity relates to both a 
model’s neurophysiological plausibility and what the model can con-
tribute to advancing understanding of the neurophysiological basis 
of the outcome. Plausible models respect what is known about the 
physiological properties of the measures used and are corroborated 
by evidence from other sources, such as invasive animal or human 
studies that converge on the same brain regions. Plausible models are 
more likely to be valid and more likely to contribute to our cumulative 
understanding of brain health. For example, an award-winning model 
in the Pittsburgh Brain Imaging Analysis Competition was accurate 
but relied mainly on fMRI signal in the brain’s ventricles74. As no 
meaningful fMRI activity is known to arise from the ventricles, these 
signals are implausible as measures of neural function and therefore 
do little to advance our understanding of the brain.

Models that can be understood and described by humans tend to be 
more neuroscientifically useful. This is a strength of the simple, single-
region models used in traditional brain mapping approaches and a weak-
ness of complex machine-learning-derived models with many features. 
The machine-learning algorithms used to train such models do not, in 
themselves, provide any constraints related to neuroscientific validity; 
these must be supplied by the analyst. Machine-learning techniques have, 
however, developed several heuristic techniques to simplify models; 
for example, least absolute shrinkage and selection operator (LASSO) 
and ridge-regularization methods are popular because they reduce the 
number of brain features in the model by imposing sparsity constraints34. 
Other recent studies improve interpretability by measuring the impor-
tance of input features75. These efforts can make the basis of model pre-
dictions more ‘interpretable’—easier to understand and describe.

Developing plausible and interpretable models is important because 
such models are more likely to hold up to rigorous testing and general-
ize to new settings. For example, the model with the highest predictive 
accuracy in the ADHD-200 global competition76 seemed to be based 
largely on in-scanner head motion77. Another group accurately pre-
dicted autism status from brain responses to auditory oddballs, but the 
model performed at chance after controlling for eye blinks78. These 
two models are not robust; they would likely perform poorly if better 
techniques were applied to reduce nuisance signals. More importantly, 
the models themselves tell us nothing about the neural basis of ADHD 
or autism. Essentially, if we do not know why a test succeeded, it is 
difficult to determine when it will fail and how meaningfully it con-
tributes to our understanding of the disorder’s pathophysiology.

Though converging evidence from previous findings can help vali-
date a model, models that are not compatible with existing theories 
can also lead to new discoveries that advance theory. For example, 
though multiple sclerosis has long been thought of as a white matter 
disease, pathological signs have also been observed in gray matter, 
which is now known to play important roles in multiple sclerosis79. 
Model development need not be limited to currently available neu-
robiological mechanisms, if the data provide compelling evidence for 
the neuroscientific validity of new ones. Therefore, neuroimaging-
based models can also play a role in discovery and theory-building.

A systematic approach to improving neuroscientific validity. One 
important challenge is that we have yet to establish systematic meth-
ods to evaluate and enhance multivariate models’ interpretability and 
neuroscientific validity. Here, we propose three basic steps for evaluat-
ing and enhancing interpretability.

First, the models should be summarized and visualized in a human-
readable way. In this step, statistical techniques for dimensionality 
reduction and feature selection can be helpful. Some studies reduce 
the dimensionality of complex models by first using principal or 

independent component decompositions and analyze relationships 
of outcomes with a small number of components, rather than a large 
number of features51. Others use a small set of graph theoretic features 
based on network topology80,81. Studies can also cluster voxels with 
similar predictive profiles82 or use bootstrap-based significance tests 
for which voxels contribute most reliably23.

Second, researchers should evaluate the neuroscientific plausibility 
of the predictive weights (or other parameters). For example, neu-
roimaging signatures for AD can be more confidently interpreted if 
they are validated with postmortem markers of pathology83. There 
is also a growing set of tools for rapidly comparing results to previ-
ous findings. Meta-analysis databases can provide comparisons with 
previous results across many tasks84. Large-scale analyses of activity 
across resting-state data85 and multimodal data86 from consortium 
studies can relate predictive models to established normative pat-
terns. Meta-analytic databases of anatomical connectivity in nonhu-
man animals87,88 can relate activity and connectivity across species, 
allowing mechanistic, invasive animal studies to be brought to bear 
in interpreting human findings.

Third, researchers should examine, to the degree possible, whether 
any confounding factors contribute to the model. There is a grow-
ing recognition of the complex and pervasive effects of head move-
ment on models and increasing focus on mitigation89. There are also 
many other potential confounds, including physiological noise, eye 
movements, individual differences in vasculature and hemodynamics, 
medication use (and abstinence), age and others. Assessing whether 
machine-learning models based on patterns of confounding variables 
explain estimated outcomes could be helpful (for example, ref. 23). 
However, it might be impossible to definitively account for all poten-
tial confounds. This does not mean that brain models are not useful; 
current diagnostic procedures are also fraught with similar challenges. 
Rather, as we describe below, models can be provisionally trusted in 
proportion to their evidence and neuroscientific plausibility, and the 
most promising models should be scaled up to larger tests.

Deployability and scalability. Brain models that are useful for 
translation must be easily applicable to new individuals and share-
able across laboratories, in the sense that testing procedures can be 
performed in new settings with minimum complexity and poten-
tial for error. In all but the simplest cases, this requires data file(s) 
that precisely specify which brain locations and/or connections are 
involved in the model and all relevant parameter estimates. Avoiding 
errors and standardizing procedures will require standardized data 
formats and software that produce identical results across different 
computing environments90. Scalable models and procedures can be 
cost-effectively deployed across different groups, supporting large-
scale testing and application.

Named neuroimaging models. An encouraging recent trend is the 
development of named signatures for clinical disorders. Naming is 
important because it implies that a signature is a defined ‘research 
product’ that can be shared and annotated by many people and groups. 
Named signatures can facilitate subsequent model-sharing and pro-
spective testing. Examples include the SPARE-AD for Alzheimer’s and 
the Parkinson’s Disease-Related Pattern (PDRP; based on FDG-PET), 
among others (Table 2). The SPARE-AD was developed in 2008 (ref. 46)  
and subsequently tested for prospective prediction of disease progres-
sion on multiple data sets45,91. Later, it was tested for sensitivity to cog-
nitive impairment across multiple neurodegenerative disorders92,93 
and multiple study sites94. Likewise, the PDRP signature developed 
in 2006 (refs. 95,96) has been shared and tested with other groups, 
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tested after the model has been developed and finalized. Second, the 
most useful signatures will generalize across laboratories, scanners and 
minor variants in testing conditions. The more robust a brain signa-
ture is to variation in test conditions, the more applicable and useful it 
will be. Third, useful signatures will generalize meaningfully to other 
outcomes related to the same construct67. For example, in addition to 
sensitivity and specificity to math performance, a signature for ‘math  
ability’ should predict performance across multiple types of math 

Just as machine learning comprises a large family of  
algorithms34,35, there is a large family of models to which they  
can be applied. For our purposes here, models are ways of  
structuring variables to provide theoretically meaningful and  
practically useful representations of brain–outcome relationships.  
All models make assumptions, and if the assumptions fit the  
underlying nature of the brain representations involved, they are  
likely to be more predictive and more theoretically meaningful132.  
Here, we consider five important distinctions that characterize  
different model classes.
 One fundamental choice when building predictive brain models  
is the choice of spatial scope (Fig. 5a). Many early machine-learning  
applications focused on understanding representations in isolated  
brain regions30,133, which is implicitly a model of local representation. 
Searchlight analyses conduct such local tests across the brain and have 
become popular as a way of mapping which local regions accurately  
predict or ‘decode’ stimuli or outcomes134. If an outcome is truly  
encoded in a single brain area, local decoding analyses are appropriate.  
However, these searchlights are not typically integrated into unified  
predictive models that provide a single best prediction. In addition,  
brain representations relevant for performance and clinical outcomes 
may often be distributed across multiple regions and networks.  
If so, models that integrate contributions from different brain areas  
will likely be required for accurate prediction24,58,135.
 Another aspect of spatial scope concerns how information is combined across voxels and regions (Fig. 5b). Linear models specify patterns of weights 
on voxels or distributed components that combine additively. They can also include nonadditive interactions and connectivity among regions that are 
closely related to one another. Nonlinear models can capture more complex, often nonmonotonic relationships between brains and outcomes. Modeling 
interactions and nonlinearities can sometimes improve accuracy, but they come at a cost in interpretability.
 Third, models make different assumptions about how, and whether, to model covariance (i.e., relationships) across brain voxels and/or outcomes  
(Fig. 5c). Standard decoding models (for example, using an SVM to predict an outcome) considers the covariance across voxels when estimating  
predictive weights—that is, the influence of some voxels is assessed when controlling for other voxels. They do not, however, typically control for  
other correlated outcome variables (for example, age, task performance or behavior; but cf. refs. 136,137). Thus, they are multivariate in brain space 
and univariate in outcome space. These models are well suited for understanding how much variance of a stimulus or psychological state can be  
explained by a brain pattern. Encoding models138, in contrast, specifically model covariance across psychological and behavioral outcome variables  
for a single voxel and ignore covariance between voxels. Thus, these models are multivariate in outcome space and univariate in brain space and  
are useful for assessing the amount of explained variance in a brain region by various processes associated with the stimulus feature space.  
Finally, some approaches are fully multivariate; they incorporate both encoding and decoding models to model the covariance between both outcomes 
and brain voxels139,140.
 Fourth, most models currently applied to neuroimaging are two-layer, modeling only relationships among brain variables and outcomes.  
A very promising class, prominent in models of vision and language, is the construction of multiple-layer models that include intermediate brain  
representations (Fig. 5d). Intermediate ‘layers’ can include nonlinear transformations of stimulus inputs141,142, theoretically motivated basis sets  
of complex features29,121,139, transformations into temporal or spatial frequencies143 composite components or ‘networks’23,51, or composite  
features learned from training data, as in ‘deep learning’ networks144,145. Models can also combine multiple submodels with different operating  
rules and computations146.
 Finally, models can be trained within a single subject, to identify idiographic brain patterns that predict outcomes for one specific individual30,133,  
or across subjects, to identify patterns that generalize across individuals23,147 (Fig. 5e). Advantages of within-subject (idiographic) models include  
improved accuracy when patterns differ across individuals and have the ability to capture representations at finer spatial scales. Advantages of  
between-subject (population) models include generalizability, prognostic utility in clinical settings and greater robustness to confounds that can  
plague within-subject analyses148,149. New developments in functional alignment techniques such as hyperalignment might be able to benefit  
from the strengths of both within- and between-subject models150.
 Across all these choices, model comparisons can help understand which aspects of a model are critical for accurate prediction: local or  
distributed, additive or nonadditive, linear or nonlinear, two-layer or multilayer, idiographic or generalizable. Models are about much more than  
prediction: understanding which models work best for a given behavior can help us understand the necessary and sufficient representational basis  
in terms of brain function.
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providing prospective validation beyond one laboratory and study 
site97,98. The ability to deploy and share these signatures across labo-
ratories is a critical part of their widespread validation and testing.

Generalizability across contexts and populations. Generalizability 
of brain models is another frontier. Models useful for translation must 
be generalizable in several ways. First, they must generalize to new 
individuals. Their diagnostic accuracy should hold up in samples 

Figure 5 Varieties of predictive models. Developing a predictive model 
entails making choices about its input data, structural properties, and level 
of analysis. Five of the most important choices are discussed in Box 1.

Box 1 Varieties of predictive models 
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tests99. Iterative testing of what a signature does and does not general-
ize to can help identify what construct a signature actually measures.

Ecologically valid data sets. One important challenge for generalizability 
comes from the fact that most clinical studies collect data from homo-
geneous patient samples carefully selected on the basis of a specific set 
of inclusion and exclusion criteria. Homogeneous samples can increase 
statistical power to discover differences between groups and rule out 
a number of potential confounds. However, such samples are typically 
not representative of the broader population, and models based on 
them are thus less likely to generalize to real-life clinical settings, where 
patient groups are highly heterogeneous. Some studies have attempted 
to overcome this problem by collecting data from all comers to the 
clinic100, conducting large-scale community cohort studies101 or using 
multisite consortium data sets102. Clearly, there is a tradeoff between 
tighter control and broader generalizability, and both approaches are 
needed. Managing this tradeoff remains an open challenge.

Big data approaches. Though explicit evaluations of generalizability 
across different populations, sites and scanners are still very rare, stud-
ies have begun to explicitly examine generalizability using large-scale 
data sets based on research consortia or multisite collaborations32. 
However, the big data approach also has many challenges. A central 
one is related to variability in data quality, acquisition parameters and 
procedures, clinical assessments, missing data, and study populations. 
Variability in data acquisition leads to differences in data scaling and 
to different patterns of artifacts and signal dropout. Variability in 
study populations and clinical assessments can cause clinical severity 
to be confounded with study site (among other confounds). Such con-
founds are difficult to fully account for in analysis. Another key issue 
is that many consortium-based datasets include a limited number of 
functional tasks, with heavy reliance on resting-state data. This limits 
the ability to assess a wide range of relevant cognitive and affective 
functions. In addition, the uncontrolled psychological nature of the 
resting-state ‘task’ can increase the possibility of confounds103,104.

Despite these challenges, specific recommendations and massive 
efforts to resolve these issues have already been made for some data 
sets (for example, ADNI102, the function Biomedical Informatics 
Research Network (fBIRN)105, and Multidisciplinary Approach to 
the Study of Chronic Pelvic Pain (MAPP)106). The efforts include 
standardizing scan parameters and clinical measures, calibrating 
scanners using standard phantoms, developing new task models, 
using a traveling expert and centralized monitoring of data, pro-
viding multisite training for local staff, elaborating documentation, 
and others. Such solutions are mainly available for prospective data 
collection projects, not for retrospective data-sharing projects (such 
as the Enhancing Neuroimaging Genetics through Meta-analysis 
(ENIGMA) project107), which require different solutions (for exam-
ple, using meta-analytic approaches).

Future directions: toward a next generation of translational studies
Building a cumulative science of neurotranslation. The 475 studies 
summarized in Figure 2 reveal a wilderness of different algorithms, 
models, methods and study populations. This is exactly as it should 
be. Discovering the most promising tasks and models requires broad 
exploration at first. What is needed now is to identify the most suc-
cessful approaches and build on them, testing them in increasingly 
broad and rigorous ways. As Borsook, Hargreaves and colleagues have 
noted108,109, the neuroimaging model development process should be 
similar to the process of developing pharmaceuticals and bringing 
them to market (Fig. 3a). As in the drug discovery process, neu-
roimaging model development begins with a broad search for poten-
tial predictive models. Those with good diagnostic performances  
should be further tested for accuracy and generalizability across mul-
tiple studies, laboratories and populations. As shown in Figure 3b, 
in the initial phases, it is advantageous to pursue many alternatives 
and to progressively scale up to large-scale testing in proportion to 
the model’s utility. Importantly, most models (~90%) are still in early 
stages of development and have yet to be tested beyond an initial 
development study.

Box 2 Recommendations for future efforts 

Model development:
•  Increase focus on classification and prediction problems that cannot be easily achieved with existing clinical measures. Problems include early  

detection, prognosis, differential diagnosis, patient stratification and predicting treatment response (Fig. 2c).
•  Increase focus on process-based predictive models and intermediate basic processes that may map more closely onto patterns of brain activity  

than clinical categories themselves and may reveal patterns of dysfunction and neuropathology across disorders (Fig. 4b).
•  Homogeneous samples can be used for discovery, but the models should eventually be tested on more ecologically valid (i.e., more  

heterogeneous) samples.

Model validation:
•  Plan proper prospective tests with independent test data from the early stages of study design and analysis planning (Fig. 2e).
•  Test model specificity over multiple alternative conditions (for example, differential diagnoses, multiple cognitive and affective processes).
•  Demonstrate models’ neuroscientific validity (see “A systematic approach to improving neuroscientific validity”).

Cumulative science:
•  Treat brain models as sharable research products that can be tested and annotated across different laboratories.
•  Name newly developed predictive models to facilitate subsequent model-sharing and prospective testing (Table 2).
•  Identify promising models and test them in increasingly broad and rigorous ways.

Big data approaches:
•  Include multiple disease groups and task conditions in large-scale data initiatives. Important problems such as patient stratification and  

specificity testing can only be achieved with data that cut across multiple conditions and diagnoses.
•  Establish quality-control standards and abide by established ones.
•  When developing models on multisite data, carefully consider issues of variables that may be unbalanced across study sites (for example,  

patient/control ratios and measurement variances), and thus create confounds. Where such confounds are unavoidable, consider a strategy  
of developing models on one sample and then testing generalizability to other samples, rather than pooling data across sites.
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This model development and validation process can be greatly aided 
by the sharing of data, but arguably it can be aided even more by 
sharing the models themselves, including model specifications and 
parameter estimates. Biology is replete with assays and standardized 
protocols that are repeated daily in thousands of laboratories across the 
world. Such assays constitute shareable research products and routinely 
make the transition from scientific development to widespread use. In 
neuroimaging, defined signatures can be tested and annotated across 
laboratories and study cohorts, their utility validated and boundary 
conditions—what they measure and what they do not measure— 
characterized. Researchers are becoming increasingly comfortable 
with the idea of using other people’s data. However, to advance the 
field, we must also begin to use others’ models of brain disorders.

Process-based predictive models. Most current translational models 
are comprised of spatial patterns that map brain structure or function 
directly onto clinical outcomes (Fig. 4a). These models do not consider 
intermediate features or processes and are often minimally constrained 
by theories of brain function. They provide little description of the divi-
sion of labor across brain regions and the dynamics of information flow 
through the regions included in the model. Considering these aspects 
affords opportunities to develop more sophisticated brain models of 
behavioral outcomes and disorders (Fig. 5 and Box 1). Models that 
address these limitations might prove to be both more accurate and more 
neuroscientifically useful, providing greater insight into the nature of the 
mental processes that are disrupted in the course of brain disease.

One promising direction is the development of signatures for basic 
mental processes, which can then serve as intermediate features that are 
altered in various combinations in different disorders6,110,111 (Fig. 4b). 
Such process-based predictive models are essential for moving beyond 
current diagnostic categories and establishing specific forms of neu-
ropathology that lead to specific functional problems across disorders, 
as described in the RDoC (ref. 7). In one example, Lopez-Sola et al. devel-
oped a model to discriminate patients with fibromyalgia from healthy 
controls based on brain patterns related to several distinct component 
processes110. One process was evoked pain sensitivity, which is a feature 
of multiple pain-related disorders112–114. Wager et al. developed an fMRI-
based signature for evoked pain, called the Neurologic Pain Signature 
(NPS)23, which is sensitive and specific to pain across a number of con-
ditions23,24,115,116 and which generalizes to multiple types of acute pain 
across studies and diverse populations115,117,118 (Fig. 4c). This signature 
does not measure a disorder but rather a negative sensory and affec-
tive process that cuts across disorders. Lopez-Sola et al.110 found that 
enhanced NPS responses, combined with another brain signature related 
to nonpainful sensory processing, discriminated fibromyalgia from pain-
free controls with 93% accuracy.

In another example, Wiecki et al. used computational model-derived 
parameters combined with EEG data to classify deep-brain stimulation 
(DBS) state (i.e., on versus off) in patients with Parkinson’s disease119. 
DBS of the subthalamic nucleus often induces impulsive behav-
iors, which Wiecki et al.119 modeled using a drift-diffusion model. 
EEG measures, combined with drift-diffusion model of impulsivity  
classified individuals’ DBS status with 0.81 area under the curve 
(AUC), whereas combining EEG and response times—a simpler meas-
ure of impulsivity—yielded only 0.67 AUC. This study illustrates how 
computational models can aid in developing intermediate features, 
highlighting the promise of computational psychiatry120.

Finally, another approach is to use dynamic process models as 
intermediate features, linking diagnostic performance with a process- 
level description of information flow among brain regions. In one 
example, Brodersen et al.121 embedded a dynamic causal model122 

of speech processing within a classification framework. The model 
estimated which connections in a structured model of auditory system 
connectivity were disrupted in aphasia. This model discriminated 
aphasics from controls with high (98%) accuracy and outperformed 
standard support vector machine pattern classification. Recently,  
this approach has been extended to other domains, such as predicting 
hidden motives for social behavior123, that may form core compo-
nents of dysregulated behavior across mental disorders.

Conclusions
The widespread availability of pattern recognition techniques, com-
bined with large multisite neuroimaging data sets, affords unprec-
edented opportunities to close the gap between basic and translational 
neuroscience. However, major advances will require specific ways of 
combining pattern recognition and aggregated neuroimaging data 
that are not yet the norm (Box 2). Predictive models should focus 
on both clinical outcomes and basic processes that may be dysregu-
lated across multiple disorders. The models must be precisely defined, 
applicable to individual persons and neuroscientifically plausible and 
interpretable. These modeling efforts go hand in hand with increas-
ingly systematic assessment of the diagnostic value of brain markers 
across diverse samples. Models should be generalizable in multiple 
ways: across individuals, assessment methods, experimental settings 
and populations. Testing a model’s diagnostic value and generalizabil-
ity is an open-ended process that requires participation from multiple 
laboratories. Therefore, the models themselves must be easily deploy-
able and shareable. Increased collaborative efforts to share predictive 
models as well as data will allow the models to be rigorously and pro-
spectively tested, helping to bring translational goals within reach.
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