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Earlier in the regression section, we mentioned that the Ultimatum Game dataset
we were working with was actually a repeated design, which means that there was
a correlated variance structure because all of the observations were nested within
each subject. The standard solution to this problem in a GLM framework is to
treat subject as a fixed effect and add (n-1) variables indicating a dummy code
for each subject. This strategy will effectively model the mean for each subject
removing inter-subject variability from the residual. However, this approach can be
problematic because (1) it eats up your degrees of freedom, (2) it does not allow your
model to generalize outside of your sample, and (3) it does not allow for modeling
variations in individual subject coefficients. Mixed models provide an alternative
approach that can address all of these limitations.

1 Introduction to Mixed Models

Mixed models are extensions of standard regression that allow data to be structured
into groups and coefficients to vary by groups. This framework is particularly suited
for modeling clustered data, such as students in a classroom and also longitudinal
or repeated data, such as treatment studies and within subject designs. One of
the confusing things about learning about mixed models is that the terminology is
often confusing and conflicting. For example, not even the term ”mixed models” is
agreed upon. This class of models is also referred to as mixed effects, multilevel,
and hierarchical models. We prefer the term mixed because it does not implicitly
force one to conceptualize these models as solely suited for hierarchical or multilevel
problems.
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1.1 Fixed and Random Effects

The term ”mixed” comes from the fact that these models are composed of fixed and
random effects terms. Fixed effects are associated with continuous (e.g., age, weight,
or baseline scores) or categorical (e.g., gender or treatment group) variables. These
fixed factors are often experimentally manipulated and include all levels that are of
interest to the study. Fixed effects refer to unknown constant parameters associated
with the weight of an effect of either a continuous or categorical variable on an
outcome variable. These parameters are usually what is of interest when we are
fitting models. Random effects, in contrast, are typically associated with levels of
a factor that are not of intrinsic interest, but are taken to be randomly sampled
from a larger population. For example, when investigating student’s performance in
schools, the actual schools themselves are often randomly sampled within a district,
state, or country and thus are not of interest in and of themselves. Similarly, when
investigating performance in a cognitive task, researchers often recruit many different
subjects which are thought to be randomly sampled from the greater population. The
levels of these random factors are usually not fixed, but randomly sampled from a
larger population. Random effects, thus, refer to unobserved random values, which
are usually assumed to follow a normal distribution. These values are specific to a
given level of a random factor and often represent deviations from the relationships
described by a fixed effect. For example, perhaps we find that the amount of money
offered in an Ultimatum Game (a fixed factor) predicts whether a given individual
accepts or rejects the offer. However, not all subjects might be affected to the same
degree by the amount of money offered. Each subject may be modeled using random
intercepts, which represent random deviations for a given subject from the overall
fixed intercept in the model.

1.2 Varying Intercepts and Slopes

In the mixed model framework the coefficients for the intercepts and slopes of a fixed
factor can vary within levels of a random factor. This can easily be illustrated to
be an extension of a simple regression model. In equation 1 we see that we can
predict the decision of observation i by the linear combination of an intercept α, an
independent predictor x weighted by β, and an error term ε. To continue with the
Ultimatum Game example, varying intercept models allow each subject j to have
a different intercept for each observation [i] nested within j, which is illustrated in
equation 2. This allows each subject to have different starting values of the fixed
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factor offer amount. Alternatively, we could have a fixed intercept, but allow each
subject j to have a different weighting βj[i] of the effect of offer amount on their
decisions yi. This is referred to as a varying slope model and can be seen in equation
3. Finally, we could have a model that has both an intercept and slope that varies
for each subject, depicted in equation 4.

yi = α + βxi + εi (1)

yi = αj[i] + βxi + εi (2)

yi = α + βj[i]xi + εi (3)

yi = αj[i] + βj[i]xi + εi (4)

1.3 Nested vs Crossed

Finally, it is important to distinguish between the terms nested and crossed. You
may have heard these terms before, most likely in the context of an experimental
design. Here we use these terms to describe the relationship between various factors
(either fixed or random). A factor is said to be nested if it can only be measured
within a single level of another factor. For example, individual children are nested
within a particular classroom and classrooms are nested within a particular school.
In contrast, a factor is said to be crossed if it can be measured across multiple levels
of another factor. In a classic 2 x 2 experimental design, each level of the first factor
is crossed with each of level of the second factor. However, crossed factors can also
apply to random factors as well as fixed. For example, in a typical cognitive memory
experiment every participant is given the same list of words to recall. In this example,
assuming that the subjects and words have both been randomly sampled from their
respective populations, we can say that these two random factors are crossed.

1.4 An Example

To understand the concept of mixed models it is sometimes helpful to use a simple
example. Previously we examined decision conflict for deciding whether to accept or
reject offers in an Ultimatum Game. If you recall, we briefly mentioned that we had
treated multiple observations from the same subject as independent observations,
which violated an assumption of the linear model. However, it is possible to frame
this as a mixed model problem. At the first level, we are interested in examining
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individual participants’ reaction time changes as a function of offer amount. We
can fit a simple model of this at the first level for each participant. At the second
level, we are interested in how the participants behave as a group. If we take the
null hypothesis to be that offer amount will not affect the reaction time, then the
slope across subjects should be zero. Therefore, the alternative hypothesis would be
supported if the slopes across subjects significantly differ from zero, which could be
tested using a one-sample t-test.

We will work through this example running the previous analysis from the regression
section separately for every subject. We will use a for loop to simplify this process.
Every iteration i of the loop will run a model of Offer predicting RT for each subject.
The parameters of these models will be written to the dat file. We will first create
a vector of subject numbers using the unique command, which will be used for the
loop.

> data <- read.table(paste(website, "UG_Data.txt",

sep = ""), header = TRUE, na.strings = 999999)

> data$Condition <- relevel(data$Condition, ref = "Computer")

> subNum <- unique(data$Subject)

> dat <- matrix(ncol = 3, nrow = length(subNum))

> for (i in 1:length(subNum)) {

subdat <- subset(data, data$Subject == subNum[i])

m <- lm(RT ~ Offer, data = subdat)

dat[i, 1] <- subNum[i]

dat[i, 2:3] <- coef(m)

}

> dat <- data.frame(dat)

> colnames(dat) <- c("Subject", "Intercept", "Offer")

> print(dat)

Subject Intercept Offer

1 212 1322.7619 23.23810

2 213 1966.4540 -146.49841

3 214 956.0063 -29.96190

4 215 3470.2952 -287.22857

5 216 2297.5365 -159.44762

6 217 3122.5302 -160.48571

7 218 1476.3397 -36.96190

8 301 1891.4381 -80.92698

9 302 3038.3270 -268.48254
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10 303 2581.5556 -201.44444

11 304 1724.5397 61.57143

12 309 2403.4825 -112.88254

13 310 1460.3651 -78.14286

14 311 2076.6635 8.75873

15 405 2251.9016 -170.25714

16 406 2839.6762 -243.49841

17 407 2617.7111 -242.17778

18 408 3195.2317 -128.27619

We can now test if the parameters estimated for Offer are significantly different from
zero across subjects by running a one sample t-test on the fitted parameters

> t.test(dat$Offer)

One Sample t-test

data: dat$Offer

t = -5.1434, df = 17, p-value = 8.126e-05

alternative hypothesis: true mean is not equal to 0

95 percent confidence interval:

-176.51766 -73.82731

sample estimates:

mean of x

-125.1725

Indeed, the parameters are significantly negative, which is consistent from our pre-
vious analyses. We can graphically examine each participants’ fitted parameters by
overlaying their regressions lines onto the original scatterplot.

> plot(RT ~ Offer, data = data, col = rgb(0, 0,

0, 0.1), pch = 16, cex = 4, ylab = "Reaction Time (Seconds)",

xlab = "Offer Amount ($)")

> for (i in 1:length(subNum)) {

abline(a = dat[i, 2], b = dat[i, 3], col = "red",

lty = 2)

}

While we have successfully addressed the correlated variance structure in our dataset,
we have now estimated an overwhelming number of parameters (36 plus the t-test)
compared to just estimating two parameters for the group in the original regres-
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Figure 1: Increased decision conflict for decreasing offer amounts
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sion example, which dramatically increases alpha slippage. More importantly, each
parameter estimate is associated with some uncertainty (i.e. the standard errors
of the estimates) and should not be weighted equally in the second level analysis.
Parameters with larger standard errors or greater uncertainty should be given less
importance when summarizing the subject level parameter estimates at the group
level. Mixed models are an elegant solution to both of these problems and can simul-
taneously estimate both levels of the model using Restricted Maximum Likelihood
Estimation (REML), which allows for better estimation of the parameters.
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